{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "fzlOCgGQRw3o"
},
"source": [
"# matplotlib 入門 (12) nitta@tsuda.ac.jp\n",
"\n",
"# Chapter 12: Bar Graph (2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jsspHSOdR6wO"
},
"source": [
"## 12-1: Generate a normal distribution histogram and draw the lines of probability density his
\n",
"
\n", " Axes.hist(x,\n", " bins=None, # number of bin(class)\n", " range=None, # lower and upper limits of class\n", " density=None, # frequency if False, probability otherwise. \n", " #The return value is F (list of values, list of lower bounds, patch object)\n", " histtype='bar', # type of bar (bar/barstacked/step/stepfilled)\n", " align='mid', # position of bar (left/mid/right)\n", " orientation='vertical', # bar orientation (horizontal/vertical)\n", " color=None,\n", " **kwargs # specify the properties of Patch class\n", " )\n", "\n", "\n", "Normal distribution probability density function\n", "\n", "$\\displaystyle\n", "f(x) = \\frac{1}{\\sqrt{2\\pi \\rho}}\n", "e^{\\frac{(x - \\mu)^2}{2 \\sigma^2}}\n", "$
hist
\n",
"\n",
"An array of 10 numbers in ascending order \n",
"\n", "bins = [ 0, 20, 30, 40, 45, 50, 55, 60, 70, 100 ]\n", "\n", "represents the next 10 bins.\n", "
\n", " 0 - 19\n", " 20 - 29\n", " 30 - 40\n", " 40 - 44\n", " 45 - 49\n", " 50 - 54\n", " 55 - 59\n", " 60 - 69\n", " 70 - 79\n", " 80 - 99\n", "" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 390 }, "executionInfo": { "elapsed": 269, "status": "ok", "timestamp": 1648475366123, "user": { "displayName": "Yoshihisa Nitta", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64", "userId": "15888006800030996813" }, "user_tz": -540 }, "id": "1ErBzpMKVdpS", "outputId": "69652558-af22-46f1-f265-7faf5f38daee" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAF1CAYAAAAqWWZfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df7xddX3n+9f7JsLgD8CG4CiBhinpD8RqS0rtHe1VKRaKEu8INV5GmZaKj9syba/T6cRpYSrFGbi3d5g6UmdQRGRKgdJym5EoalFbnSsSFIVAaQ8YSwJK+CEqLdDYz/yxvtHN7knOPotz9t45eT0fj/04a6/1/a71XfvsfM87a3/X/qaqkCRJkjR//8ukGyBJkiTtrQzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJbGJMm/SPLp3WxbnaSSLN/N9n+b5H2L20JJ2rMkL09y16TbMZskW5K8YjfbXpFk2x7q7rEPnqX8B5Kcv4ft30ryT0bZl/Z+I71pJE1WVf37SbdBkqrqz4EfmHQ7ZlNVLxy1bJKtwC9U1ccXqS3PXoz9ajp5ZVqSJM1p1Ku20r7GMK0FkWRrkn+d5EtJHktyaZLnJflwkm8m+XiS5w6UP6V9JPf1JJ9M8kND+/q1tq9Hk1yd5B8NbH9LkpkkDyfZmOQFbX2SXJTkgSTfSHJbkmPatg8k+S9JPtba86kk3zuwz99Ncm+rd0uSlw9sW9aGWdzd6t6S5PC27QfbPh9OcleSnx2ot6K17xtJPgd83wgv5c8nuS/J/Ul+bWBfv5Xkv7XlXR9HnpHkr5M8mOQ35vcbk7QvSPJvklw7tO53k7yrLf9ckjtb33ZPkrcOlHtFkm1tH18FLhseLpHkh1of/vXWp58ysO2TSX5h4Pl3hrrtqb8eausrk9w28PxjSW4eeP7nSV7Xlrcm+am2fEDr9x9JcgfwYwN1rgCOAP57G47x6wOHPH0e/eohe/ibUkmOassfSHJxkutb2ZuSfN98XgdNN8O0FtLrgROA7wdeC3wY+LfASrr32i8DJPl+4A+AX23bNtF1avsN7OtngROBI4EfBv5Fq/sq4D+07c8HvgJc1eq8GvjJdvyDWpmHBvZ5OvDbwCHArcDvD2y7GXgJ8D3AlcAf5rsB/m3AG4GfAQ4Efh74myTPAj7Wyh8KrAd+L8nRrd7FwOOtnT/fHnN5JbCmncu/2fWHYTdeRvdx6/HAuRn4D4kkNVcBP5PkOdBdHKDrG69s2x8AXkPXt/0ccFGSHx2o/4/p+sXvBc4a3HGSZwD/HfgoXR/4L4HfTzLKMJC5+utdPgusSXJIO94PAy9I8pwkBwBrgT+fpd6/o7uA8X3ATwNn7NpQVW8C/hp4bVU9u6r+74F68+lX9/Q3Zdh64B3Ac4EZ4J1t/aivg6aYYVoL6T9X1deqajtd53ZTVX2hqh4HrgN+pJV7A3B9VX2sqv4O+B3gAOB/HdjXu6rqvqp6mK6zfklbfzrw/qr6fFU9Abwd+Ikkq4G/A54D/CCQqrqzqu4f2Of1VfVnrd5vtHqHA1TVf6uqh6pqZ1X9v8D+fHdc4C8Av1lVd1Xni1X1EN0foK1VdVmr9wXgj4DT2h+s1wPnVtVjVXU7cPkIr+E7WvnbgMvoQvyeyv5tVX0R+CLw4hH2L2kfUlVfAT4P/O9t1auAv6mqz7bt11fV3a1v+xRdMH75wC7+Hvh3VfVEVf3t0O5fCjwbuKCqnqyqG4EPsed+a5e5+utd7f9buosdPwkcS9fXfQb4p+34f9X642E/C7yzqh6uqnuBd43QJphfv7rbvymzuK6qPldVO+lC966/aSO9DppuhmktpK8NLP/tLM933ZDxArorygBU1d8D9wKHDZT/6sDy3+yh7rfo/hd/WOvI3013RfiBJJckOXBgP/cO1Xu47Y90w0ruTDes5Ot0VwgOacUPB+6e5Xy/F/jx9vHm11u90+mu5Kyku8H33oHyX5llH8OGy79gD2V39xpJ0qAr+W7A/T/47lVpkpyU5LNtqNrX6T6BO2Sg7o52QWQ2LwDubX34Ll/hqX35rEborwd9CngFXaD+FPBJ4H9rj0/tqW1D7RrFfPrV3f5NGXW/83wdNKUM05qE++iCKNCNGaMLrNt71H0WsGJX3ap6V1UdCxxN97HZvx6oe/hAvWfTfXR5X7rx0b9OdyXjuVV1MPAokFb8XmYf73wv8KmqOnjg8eyq+j+BHcDOwWPSjdGby3D5+0aoI0l78ofAK5KsortCfSVAkv3pPk37HeB5re/bxHf7PoDaw37vAw5PMpgljuC7ffljwDMHtv3jwcpz9NeDhsP0p5g7TN/PnvvfPZ3XqGb9mzLfnczjddCUMkxrEq4BTk5yfBsD96+AJ4D/MULdPwB+LslL2h+Cf083nGRrkh9L8uNtn4/RjVcevGLyM0le1sZm/zbw2fbx33Pogu8OYHmSc+nGD+7yPuC3k6xpN4v8cJIVdB9nfn+SNyV5Rnv8WJIfqqpvA38M/FaSZ7Zx1Gcwt3Na+RfSjV+8eoQ6krRbVbWD7mruZcCXq+rOtmk/uiFtO4CdSU6iG8M7qpvorrL+euv/XkF3v8yu+1huBf5Z69OOAs7cVXGE/nrQ/6Abdncc8Lmq2kL7ZBD4s93UuQZ4e5Lntv9E/Muh7V8Dnu73QO/ub8rI5vk6aEoZpjV2VXUX8M+B/ww8SNf5vraqnhyh7seBc+iuptxPd8V4fdt8IPBe4BG6j/QeAv6fgepX0t2U8jDd2Lt/3tbfAHwE+MtW73Ge+vHgf6TrmD8KfAO4FDigqr5J94dnPd3ViK8CF9L9cQI4m+6jvK8CH6D7QzaXT9HdnPKnwO9U1UdHqCNJc7kS+CkGhni0PuyX6fq3R+iGgGwcdYetz34tcBJdX/57wJur6i9akYuAJ+mC6+U89Qa9ufrrweM8Rjfue8vA34n/H/hKVT2wm+a9o+33y3R99xVD2/8D8JttiN6vDVce0e7+pszHyK+DpleqFuKTDmm6JfkAsK2qfnPSbZEkSUuHV6YlSZKkngzTkiRJUk8O85AkSZJ6GunKdJIT002VPJNkwyzb90835fNMmyZzdVt/Qrqpl29rP181UOeTbZ+3tsehC3VSkiRJ0jgsn6tAm8ntYrpporcBNyfZWFV3DBQ7E3ikqo5Ksp7uGw3eQPumhqq6r801fwNP/TL306tq8wKdiyRJkjRWc4Zpuu91nKmqewCSXAWsAwbD9Drgt9rytcC7k6RNr7zLFuCAJPu3qTfn7ZBDDqnVq1f3qSpJE3XLLbc8WFUrJ92OcbLPlrS3mk+fPUqYPoynfufuNrovSp+1TFXtTPIo3ax0Dw6UeT3w+aEgfVmSb9N9Z/D5NcsA7iRnAWcBHHHEEWze7IVsSXufJKNOZ7xkrF692j5b0l5pPn32WL7No83mdiHw1oHVp1fVi4CXt8ebZqtbVZdU1dqqWrty5T51UUeSJElTbpQwvZ2nzm+/qq2btUyS5cBBdLP40KbxvI5uVqS7d1Woqu3t5zfpZhE6rt8pSJIkSZMxSpi+GViT5Mg2//x6/uF0oxuBM9ryqcCNVVVJDgauBzZU1Wd2FU6yPMkhbfkZwGuA25/eqUiSJEnjNWeYrqqdwNl038RxJ3BNVW1Jcl6SU1qxS4EVSWaAtwG7vj7vbOAo4Nyhr8DbH7ghyZeAW+mubL93IU9MkiRJWmyj3IBIVW0CNg2tO3dg+XHgtFnqnQ+cv5vdHjt6MyVJkqTp43TikiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ5GmrRF0vys3nD9oh9j6wUnL/oxJGm+5tv/2Zdpb+eVaUmSJKknw7QkSZLUk2FakiRJ6skwLUlLTJITk9yVZCbJhlm275/k6rb9piSr2/oTktyS5Lb281UDdT7Z9nlrexw6vjOSpOnlDYiStIQkWQZcDJwAbANuTrKxqu4YKHYm8EhVHZVkPXAh8AbgQeC1VXVfkmOAG4DDBuqdXlWbx3IikrSX8Mq0JC0txwEzVXVPVT0JXAWsGyqzDri8LV8LHJ8kVfWFqrqvrd8CHJBk/7G0WpL2UoZpSVpaDgPuHXi+jadeXX5KmaraCTwKrBgq83rg81X1xMC6y9oQj3OSZLaDJzkryeYkm3fs2PF0zkOS9gqGaUnSUyR5Id3Qj7cOrD69ql4EvLw93jRb3aq6pKrWVtXalStXLn5jJWnCHDOtRePEJdJEbAcOH3i+qq2brcy2JMuBg4CHAJKsAq4D3lxVd++qUFXb289vJrmSbjjJBxfrJCRpb+GVaUlaWm4G1iQ5Msl+wHpg41CZjcAZbflU4MaqqiQHA9cDG6rqM7sKJ1me5JC2/AzgNcDti3wekrRXMExL0hLSxkCfTfdNHHcC11TVliTnJTmlFbsUWJFkBngbsOvr884GjgLOHfoKvP2BG5J8CbiV7sr2e8d3VpI0vRzmoSXJISbal1XVJmDT0LpzB5YfB06bpd75wPm72e2xC9lGSVoqvDItSZIk9WSYliRJknpymIckSZq4+Q7Pc6idpoVXpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9OWmLJEnaqznhiybJK9OSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyRsQJUnSPms+Ny9646Jm45VpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1NNIYTrJiUnuSjKTZMMs2/dPcnXbflOS1W39CUluSXJb+/mqgTrHtvUzSd6VJAt1UpIkSdI4zBmmkywDLgZOAo4G3pjk6KFiZwKPVNVRwEXAhW39g8Brq+pFwBnAFQN13gO8BVjTHic+jfOQJEmSxm6UK9PHATNVdU9VPQlcBawbKrMOuLwtXwscnyRV9YWquq+t3wIc0K5iPx84sKo+W1UFfBB43dM+G0mSJGmMRgnThwH3Djzf1tbNWqaqdgKPAiuGyrwe+HxVPdHKb5tjnwAkOSvJ5iSbd+zYMUJzJUmSpPEYyw2ISV5IN/TjrfOtW1WXVNXaqlq7cuXKhW+cJEmS1NMoYXo7cPjA81Vt3axlkiwHDgIeas9XAdcBb66quwfKr5pjn5IkSdJUGyVM3wysSXJkkv2A9cDGoTIb6W4wBDgVuLGqKsnBwPXAhqr6zK7CVXU/8I0kL23f4vFm4E+e5rlIkiRJYzVnmG5joM8GbgDuBK6pqi1JzktySit2KbAiyQzwNmDX1+edDRwFnJvk1vY4tG37ReB9wAxwN/DhhTopSZIkaRyWj1KoqjYBm4bWnTuw/Dhw2iz1zgfO380+NwPHzKexkiRJ0jRxBkRJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSVpikpyY5K4kM0k2zLJ9/yRXt+03JVnd1p+Q5JYkt7Wfrxqoc2xbP5PkXUkyvjOSpOllmJakJSTJMuBi4CTgaOCNSY4eKnYm8EhVHQVcBFzY1j8IvLaqXgScAVwxUOc9wFuANe1x4qKdhCTtRQzTkrS0HAfMVNU9VfUkcBWwbqjMOuDytnwtcHySVNUXquq+tn4LcEC7iv184MCq+mxVFfBB4HWLfyqSNP0M05K0tBwG3DvwfFtbN2uZqtoJPAqsGCrzeuDzVfVEK79tjn0CkOSsJJuTbN6xY0fvk5CkvYVhWpL0FEleSDf0463zrVtVl1TV2qpau3LlyoVvnCRNGcO0JC0t24HDB56vautmLZNkOXAQ8FB7vgq4DnhzVd09UH7VHPuUpH2SYVqSlpabgTVJjkyyH7Ae2DhUZiPdDYYApwI3VlUlORi4HthQVZ/ZVbiq7ge+keSl7Vs83gz8yWKfiCTtDQzTkrSEtDHQZwM3AHcC11TVliTnJTmlFbsUWJFkBngbsOvr884GjgLOTXJrexzatv0i8D5gBrgb+PB4zkiSptvySTdAkrSwqmoTsGlo3bkDy48Dp81S73zg/N3sczNwzMK2VJL2fl6ZliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk/LJ90ASZK0eFZvuH5R97/1gpMXdf/StPPKtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6mmkMJ3kxCR3JZlJsmGW7fsnubptvynJ6rZ+RZJPJPlWkncP1flk2+et7XHoQpyQJEmSNC7L5yqQZBlwMXACsA24OcnGqrpjoNiZwCNVdVSS9cCFwBuAx4FzgGPaY9jpVbX5aZ6DJEmSNBGjXJk+Dpipqnuq6kngKmDdUJl1wOVt+Vrg+CSpqseq6tN0oVqSJElaUkYJ04cB9w4839bWzVqmqnYCjwIrRtj3ZW2IxzlJMluBJGcl2Zxk844dO0bYpSRJkjQecw7zWESnV9X2JM8B/gh4E/DB4UJVdQlwCcDatWtrvE2UJEnavdUbrl+0fW+94ORF27cWzihXprcDhw88X9XWzVomyXLgIOChPe20qra3n98ErqQbTiJJkiTtNUYJ0zcDa5IcmWQ/YD2wcajMRuCMtnwqcGNV7fYqcpLlSQ5py88AXgPcPt/GS5IkSZM05zCPqtqZ5GzgBmAZ8P6q2pLkPGBzVW0ELgWuSDIDPEwXuAFIshU4ENgvyeuAVwNfAW5oQXoZ8HHgvQt6ZpIkSdIiG2nMdFVtAjYNrTt3YPlx4LTd1F29m90eO1oTJUmSpOnkDIiSJElST4ZpSZIkqSfDtCRJktSTYVqSlpgkJya5K8lMkg2zbN8/ydVt+01JVrf1K5J8Ism3krx7qM4n2z5vbY9Dx3M2kjTdJjlpiyRpgSVZBlwMnEA3Y+3NSTZW1R0Dxc4EHqmqo5KsBy4E3gA8DpwDHNMew06vqs2LegKStJfxyrQkLS3HATNVdU9VPQlcBawbKrMOuLwtXwscnyRV9VhVfZouVEuSRmCYlqSl5TDg3oHn29q6WctU1U7gUWDFCPu+rA3xOCdJFqKxkrS3M0xLkkZxelW9CHh5e7xptkJJzkqyOcnmHTt2jLWBkjQJhmlJWlq2A4cPPF/V1s1aJsly4CDgoT3ttKq2t5/fBK6kG04yW7lLqmptVa1duXJlrxOQpL2JYVqSlpabgTVJjkyyH7Ae2DhUZiNwRls+Fbixqmp3O0yyPMkhbfkZwGuA2xe85ZK0F/LbPCRpCamqnUnOBm4AlgHvr6otSc4DNlfVRuBS4IokM8DDdIEbgCRbgQOB/ZK8Dng18BXghhaklwEfB947xtOSpKllmJakJaaqNgGbhtadO7D8OHDabuqu3s1uj12o9knSUuIwD0mSJKknw7QkSZLUk2FakiRJ6skx00vY6g3Xj+U4Wy84eSzHkSRJmjZemZYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1NPySTdA0sJaveH6RT/G1gtOXvRjSJK0N/DKtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKmnkcJ0khOT3JVkJsmGWbbvn+Tqtv2mJKvb+hVJPpHkW0nePVTn2CS3tTrvSpKFOCFJkiRpXOYM00mWARcDJwFHA29McvRQsTOBR6rqKOAi4MK2/nHgHODXZtn1e4C3AGva48Q+JyBJkiRNyihXpo8DZqrqnqp6ErgKWDdUZh1weVu+Fjg+Sarqsar6NF2o/o4kzwcOrKrPVlUBHwRe93RORJIkSRq3UcL0YcC9A8+3tXWzlqmqncCjwIo59rltjn1KkiRJU23qb0BMclaSzUk279ixY9LNkSRJkr5jlDC9HTh84Pmqtm7WMkmWAwcBD82xz1Vz7BOAqrqkqtZW1dqVK1eO0FxJkiRpPEYJ0zcDa5IcmWQ/YD2wcajMRuCMtnwqcGMbCz2rqrof+EaSl7Zv8Xgz8Cfzbr0kSZI0QcvnKlBVO5OcDdwALAPeX1VbkpwHbK6qjcClwBVJZoCH6QI3AEm2AgcC+yV5HfDqqroD+EXgA8ABwIfbQ5IkSdprzBmmAapqE7BpaN25A8uPA6ftpu7q3azfDBwzakMlSZKkaTP1NyBKkubHibYkaXwM05K0hDjRliSNl2FakpYWJ9qSpDEyTEvS0jLRibacG0DSvsYwLUlaMM4NIGlfY5iWpKVlohNtSdK+xjAtSUuLE21J0hiN9D3TkqS9gxNtSdJ4GaYlaYlxoi1JGh+HeUiSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6mn5pBsgaWlZveH6RT/G1gtOXvRjSJI0Cq9MS5IkST0ZpiVJkqSeHOYhSdKYLOYwKIc/SZPhlWlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoaKUwnOTHJXUlmkmyYZfv+Sa5u229Ksnpg29vb+ruS/PTA+q1Jbktya5LNC3EykiRJ0jgtn6tAkmXAxcAJwDbg5iQbq+qOgWJnAo9U1VFJ1gMXAm9IcjSwHngh8ALg40m+v6q+3eq9sqoeXMDzkSRJksZmlCvTxwEzVXVPVT0JXAWsGyqzDri8LV8LHJ8kbf1VVfVEVX0ZmGn7kyRJkvZ6o4Tpw4B7B55va+tmLVNVO4FHgRVz1C3go0luSXLW/JsuSZIkTdacwzwW0cuqanuSQ4GPJfmLqvqz4UItaJ8FcMQRR4y7jZIkSdJujXJlejtw+MDzVW3drGWSLAcOAh7aU92q2vXzAeA6djP8o6ouqaq1VbV25cqVIzRXkvZt3jQuSeMzSpi+GViT5Mgk+9HdULhxqMxG4Iy2fCpwY1VVW7++ddxHAmuAzyV5VpLnACR5FvBq4PanfzqStG8buGn8JOBo4I3tZvBB37lpHLiI7qZxhm4aPxH4vba/XV5ZVS+pqrWLfBqStNeYM0y3MdBnAzcAdwLXVNWWJOclOaUVuxRYkWQGeBuwodXdAlwD3AF8BPil9k0ezwM+neSLwOeA66vqIwt7apK0T/KmcUkao5HGTFfVJmDT0LpzB5YfB07bTd13Au8cWncP8OL5NlaSNKfZbvz+8d2VqaqdSQZvGv/sUN3hm8YL+K9VdclsB/c+F0n7mknegLhPWL3h+kU/xtYLTl70Y0ja541003gL2ZcArF27tsbdSEkaN6cTl6SlZaI3jUvSvsYwLUlLizeNS9IYOcxDkpaQNgZ6103jy4D377ppHNhcVRvpbhq/ot00/jBd4KaV23XT+E7aTeNJngdc192jyHLgSm8al6SOYVqSlhhvGpek8XGYhyRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk9GaYlSZKkngzTkiRJUk+GaUmSJKknw7QkSZLUk2FakiRJ6skwLUmSJPVkmJYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSepp+aQbIEmSpKdv9YbrJ92EqbP1gpMX/RhemZYkSZJ6MkxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST3tE9OJj2N6zXFMVylpz/y3LkkaN69MS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9WSYliRJknoyTEuSJEk97RMzIEqS9h7jmMlyMTg7prRv8sq0JEmS1JNhWpIkSerJMC1JkiT1ZJiWJEmSejJMS5IkST0ZpiVJkqSeDNOSJElST4ZpSZIkqSfDtCRJktSTYVqSJEnqyTAtSZIk9TRSmE5yYpK7kswk2TDL9v2TXN2235Rk9cC2t7f1dyX56VH3KUnqxz5bksZnzjCdZBlwMXAScDTwxiRHDxU7E3ikqo4CLgIubHWPBtYDLwROBH4vybIR9ylJmif7bEkar1GuTB8HzFTVPVX1JHAVsG6ozDrg8rZ8LXB8krT1V1XVE1X1ZWCm7W+UfUqS5s8+W5LGaJQwfRhw78DzbW3drGWqaifwKLBiD3VH2ackaf7ssyVpjJZPugFzSXIWcFZ7+q0kdz2N3R0CPPj0W/UP5cLJtWOexx72tNvyNI//tNqxQMceNlJbFunYI7djDMcf9JS2jPnY/6AdEytSdn8AAAcjSURBVDz+4LnP9z37vQvemCk0zz570frkSdjD+3Is5zmpfxdP49/EcP2x1FugYy7p3+mAvf7f6Iiv4WznOXKfPUqY3g4cPvB8VVs3W5ltSZYDBwEPzVF3rn0CUFWXAJeM0M45JdlcVWsXYl9LoR0wPW2ZlnbA9LRlWtoB09OWaWkHTFdbhuw1ffYUv4YLyvNcevaVc/U8RzPKMI+bgTVJjkyyH93NKRuHymwEzmjLpwI3VlW19evbneNHAmuAz424T0nS/NlnS9IYzXlluqp2JjkbuAFYBry/qrYkOQ/YXFUbgUuBK5LMAA/TdbS0ctcAdwA7gV+qqm8DzLbPhT89Sdq32GdL0niNNGa6qjYBm4bWnTuw/Dhw2m7qvhN45yj7HIMFGS6yAKalHTA9bZmWdsD0tGVa2gHT05ZpaQdMV1ueYi/qs6f2NVxgnufSs6+cq+c5gnSf7EmSJEmaL6cTlyRJknpasmE6yfuTPJDk9oF135PkY0n+qv187hjacXiSTyS5I8mWJL8yibYk+UdJPpfki60d72jrj2zTCc+06YX3W8x2DLVpWZIvJPnQpNqSZGuS25LcmmRzWzf290k77sFJrk3yF0nuTPITE3if/EB7LXY9vpHkVyf4mvxf7f16e5I/aO/jSbxPfqW1YUuSX23rJvKaLAVZwlOTT0ufPy7T0I8vtmnom8dhWvrbxZB5ZMJ03tXO+UtJfnSu/S/ZMA18gG463EEbgD+tqjXAn7bni20n8K+q6mjgpcAvpZuGd9xteQJ4VVW9GHgJcGKSl9JNI3xRm1b4EbpphsflV4A7B55Pqi2vrKqXDHwtziTeJwC/C3ykqn4QeDHdazPWtlTVXe21eAlwLPA3wHXjbgdAksOAXwbWVtUxdDe+rWfM75MkxwBvoZsF8MXAa5IcxeTeJ3u1LP2pyaelzx+XaenHF9PE++bFNi397SL6AKNnwpPovsloDd135r9nzr1X1ZJ9AKuB2wee3wU8vy0/H7hrAm36E+CESbYFeCbweeDH6b6kfHlb/xPADWNqw6r25n0V8CEgk2gLsBU4ZGjd2H83dN/z+2XafQyTbMvAsV8NfGaCr8muWfe+h+5m6Q8BPz3u9wndjXqXDjw/B/j1aehP9sbH8O8MeDvw9km3axHPd+J9/iKe21T044t8jlPXNy/SeU5Ff7vI57iaETIh8F+BN85WbnePpXxlejbPq6r72/JXgeeN8+BJVgM/Atw0iba0j+NuBR4APgbcDXy9uumEYbxTBP8nukDy9+35igm1pYCPJrkl3cxtMJn3yZHADuCy9pHp+5I8a0Jt2WU98AdteeztqKrtwO8Afw3cTzfl9S2M/31yO/DyJCuSPBP4GboJTCban+zF9pmpySfd54/BtPTji2ka++YFN0X97Tjt7nc47z5qXwvT31HdfzfG9lUmSZ4N/BHwq1X1jUm0paq+Xd3H96voPrL+wcU+5mySvAZ4oKpumcTxh7ysqn6U7mOdX0ryk4Mbx/g+WQ78KPCeqvoR4DGGPjYc53u2jYs7BfjD4W3jakcbv7aO7o/ZC4Bn8Q8/plt0VXUn3UedHwU+AtwKfHuozFj7E02/aejzF9OU9eOLaar65sUyLf3tpDzd3+G+Fqa/luT5AO3nA+M4aJJn0HWqv19VfzzJtgBU1deBT9B9ZHNwuumEYQ9TBC+wfwqckmQrcBXdR4S/O4m2tP+NU1UP0I0NPo7J/G62Aduq6qb2/Fq6DnxS75OTgM9X1dfa80m046eAL1fVjqr6O+CP6d47k3ifXFpVx1bVT9KNG/xLJvhveC83ynTne7Vp6/MXydT044ts2vrmxTI1/e0Y7e53OO8+al8L04NT6J5BN5ZtUSUJ3Wxjd1bVf5xUW5KsTHJwWz6AbgzfnXSh+tRxtQOgqt5eVauqajXdUIIbq+r0cbclybOSPGfXMt0Y4duZwPukqr4K3JvkB9qq4+lmoRt7W5o38t0hHkyoHX8NvDTJM9u/o12vydjfs0kObT+PAP4ZcCWT+93s7Zb01OTT0ucvtmnpxxfbFPbNi2Vq+tsx2t3vcCPw5vatHi8FHh0YDjK7SQ8IX6wHXRC4H/g7uv9Znkk3nutPgb8CPg58zxja8TK6jw6+RPfx8K10Yy7H2hbgh4EvtHbcDpzb1v8T4HPADN1H+vuP+ff0CuBDk2hLO94X22ML8Btt/djfJ+24LwE2t9/R/wc8d0Lv2WcBDwEHDayb1GvyDuAv2nv2CmD/SbxngT+n+8PyReD4Sb4mS+HR+sC/pLtv4zcm3Z4FPrep6PPHfM4T68fHdH5T0TeP4Tynor9dpHMbORPS3Uh7ceufbqP7hpM97t8ZECVJkqSe9rVhHpIkSdKCMUxLkiRJPRmmJUmSpJ4M05IkSVJPhmlJkiSpJ8O0JEmS1JNhWpIkSerJMC1JkiT19D8BvOu1rS6A9eYAAAAASUVORK5CYII=\n", "text/plain": [ "