{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "lSp5EQtKvVXz" }, "source": [ "# matplotlib tutorial (4) nitta@tsuda.ac.jp\n", "\n", "# Chapter 4: Specify Title and Axis Labels " ] }, { "cell_type": "markdown", "metadata": { "id": "8D2zw3Afu7xo" }, "source": [ "## 4-1: Display titles and axis labels\n", "\n", "Set the title, axis label, etc. for the coordinate system (Axes).\n", "\n", "
fontdict
"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 407
},
"executionInfo": {
"elapsed": 319,
"status": "ok",
"timestamp": 1648474799464,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "DIh0PfD-zIB8",
"outputId": "45e4590d-d1ea-47a5-e6e4-a17caa3ca006"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAGGCAYAAACT9UPzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3wUdf7H8deHFEJJqAEiEDqh19DsXex6dkEseIie7c523ftdUU9PPc87CyqigGI/ywH2dhZK6CX0XkNNIKR/f3/sBGMuQIBkZ2fzfj4e+9jszOzue1zc935nZmfNOYeIiIhEp1p+BxAREZHqo6IXERGJYip6ERGRKKaiFxERiWIqehERkSimohcREYliKnqRgDJjmBlfmrHAu55pxkNmpPqd7VDMeM6Mb834woxVZjgzdnu3vzAjx4xGZvzG+/vEgzzWeWZs9B7jr+FcD5EgUNGLBIwZsWa8AUwAPgd6OsdJwO3AvUDfKnqewV55Lq+KxyunC3CSc5wMfOhN+9g5TvamLXeOncDZhN6ndh8ok3N8AMzxbs6vhqwigRbrdwAROWx/Ai4FvnWOP5ROdI5vzZhL1ZVdH+96zkGXOjJ/dY5C7+9u3vVCADNigF97084C4pxj1yEy9fKuVfQi5WhELxIgZjQFfu7dHFPBIpcCq7xle5rxgRnfmbHBjHfMSPHmfeaNjAvMuMeMz83YYcat3vyrgT96j9nL25ze05t3grf8t94m8xfNSDQjxYy53uOuMuPPZnxjxhYzrGxIbxReqrToF3nzip1jihlfAXuATWbUOlAmMxoBLYEiYLGXsb63GyPDjEVerguO6D+6SNA553TRRZeAXMBdB855l5YHWa4LuGxwM8HFgPuTd5/HvPmnerezwbUA18e7vabMY3zrTTu/zLSTwBWCe8e7Pd5b5nbv9g3e7RxwHcHFgnv+IDmbl1mfnuXmnelNn3WITCd60xZ6t2uBm+pN6wOug/f3Dr9fP1108eOiEb1IsPT0rnc6x4aDLPcnIBGYBDQBLgAc8IU3v4d3Pdk5NnvLAOQCeCPw0mXmlXncvxHa5TfRjPbAKYRG0v8t97gvO8dy5yhyjhsPkrN0NF8ELCk3r/SxFhwiU/nN9mcT2uS/0Jt2nTf984PkEIla2kcvEiwJ3vXWAy3g7eM+x7t5JXAxMBO43Tm+9KaXFuZM77q0cBd7120IfVDY7RxrvMdNAdK9+Xd61+8Czzm3f5956eOWPs+hdPeuVzhHQbl5pY+18ECZPKUffkqL/nzvuhGhDza7gNuoeFeHSNTTiF4kWEpLL7HsRDPMjK/MOM+bV9ebdblzHOccI4GuZvunl5boIu+6tHDnl5tf9uC25mX+PtE5jidUoCeW2Qf/o1F4JfzoQLxyyj9WRZngf0f0LbzrF5zjBOc4n9DBe30QqYFU9CLBMh5YAxxjxpkAZtQC/kxo5PofFzpCvXTE29Vb5lzgdOdCm+b5odgXlrtdWqptvevlZrQ3YwKwgtDBcfsfF7gZaOMczozGQApQCCyr5PqUPu+ishO9Dw7lPwT8T6Zym/NLi35u2YzewXqPARsrmUkkqqjoRQLEOXKAEwh9h36cGV8DHwH7gEudw3mLXgR8CzxvxvuE9lmPAPBOqJNEqLTXesuXFu59ZsQD3wErCe3vfhp4zHvuCwmNjqea8R6h0fO93n1LC3eZ++GrcxUyI9mML4AB3qQrzLimzCLtgHre37/3rv8nE6Hyr+/N/513/VdCm+mP947cfw64xTnWHyyTSLQy59yhlxIREZFA0oheREQkiqnoRUREopiKXkREJIqp6EVERKKYil5ERCSKReWZ8Zo2beratm3rdwwREZGwycjI2OacSy4/PSqLvm3btsycOfPQC4qIiEQJM1tT0XRtuhcREYliKnoREZEopqIXERGJYip6ERGRKKaiFxERiWIqehERkSimohcREYliKnoREZEopqIXERGJYhFV9GY21sy2mtmCctNvM7NMM1toZg/7lU9ERCRoIqrogXHA0LITzOwU4EKgt3OuO/A3H3KJiIgEUkQVvXPuK2BHuck3Aw855/K9ZbaGPZiIiEgVKSou4f25G3HOheX5IqroD6AzcIKZTTOzL81sQEULmdkoM5tpZjOzsrLCHFFERKRy/jo1k9tenc20VeXHtdUjCEUfCzQGBgP3AK+bmZVfyDk3xjmX7pxLT07+n1/pExER8d1/5m3iua9XMWJIGwa3bxKW5wxC0a8H3nYh04ESoKnPmURERA7L8q053PPmXPqlNuS353YL2/MGoej/DZwCYGadgXhgm6+JREREDkNOXiGjxmdQNz6Gp4b1Jz42fPUbG7ZnqgQzexU4GWhqZuuB+4GxwFjvK3cFwLUuXEcwiIiIHCXnHPe8MY8123OZMHIQLRokhPX5I6ronXNXHWDW8LAGERERqSJjvlrJ1IWb+c05XRnSITz75csKwqZ7ERGRQPp2+Tb+OjWTc3umcOMJ7XzJoKIXERGpBht37eO2V2fTPrk+f720FxV8YSwsVPQiIiJVLL+omFsmziKvsJhnhvenfm3/9pRH1D56ERGRaPCnDxYxZ90unh7Wj47N6vuaRSN6ERGRKvRmxnomfL+Wm05sz9k9U/yOo6IXERGpKgs37uY378xnSPsm3HNWmt9xABW9iIhIldiVW8DoCRk0qhvPk1f3JTYmMipW++hFRESOUkmJ487X5rB5dx6v3TSEpvVr+x1pv8j4uCEiIhJg//hsGV8syeL353enX2ojv+P8iIpeRETkKHyeuZUnPl3GJf1aMXxQqt9x/oeKXkRE5Ait3Z7LHZNm07VFEn+5uIdvJ8U5GBW9iIjIEdhXUMxNEzIAeGZ4fxLiYnxOVDEdjCciInKYnHP85t/zWbwpmxevG0Bqk7p+RzogjehFREQO08Rpa3l71gbuOK0Tp3Rp5necg1LRi4iIHIbZa3fyf+8v5JS0ZO44rZPfcQ5JRS8iIlJJ2/bkc/OEWbRokMDjV/ShVq3IO/iuPO2jFxERqYSi4hJue2U2O3MLeOvmY2lYN97vSJWiohcREamERz5awncrt/O3y3rTo2UDv+NUmjbdi4iIHMKU+Zt49suVDBuUyqX9W/kd57Co6EVERA5i+dY93P3GXPq0bsjvz+/md5zDpqIXERE5gD35RYyekEFCXAxPD+9H7djIPCnOwWgfvYiISAWcc9z35jxWZu1hwshBpDSo43ekI6IRvYiISAVe+O8q/jN/E/cO7cKxHZv6HeeIqehFRETK+X7ldh6cksnQ7i246cT2fsc5Kip6ERGRMjbvzuPWV2bRpkldHrmsV0T+It3hUNGLiIh4CopKuGViBrkFxTw7vD+JCXF+RzpqOhhPRETE85f/LGLW2l388+q+dGqe6HecKqERvYiICPDO7PW89N0abjy+Hef1OsbvOFUmoorezMaa2VYzW1DBvLvMzJlZcA99FBGRiLRoYza/ens+g9o15pdnd/E7TpWKqKIHxgFDy080s9bAmcDacAcSEZHotju3kNETMmhQJ45/Xt2P2JhIq8ajE1Fr45z7CthRwazHgXsBF95EIiISzUpKHL94fQ4bd+3jqWH9SE6s7XekKhdRRV8RM7sQ2OCcm+t3FhERiS7/+nw5n2Zu5XfndaN/m8Z+x6kWEX3UvZnVBX5NaLP9oZYdBYwCSE1NreZkIiISdF8uzeKxT5Zycd+WjBjSxu841SbSR/QdgHbAXDNbDbQCZplZi/ILOufGOOfSnXPpycnJYY4pIiJBsm5HLndMmk1a80QeuLhn4E+KczARPaJ3zs0HmpXe9so+3Tm3zbdQIiISaHmFxdw8MYPiEsczw/tTJz54v0h3OCJqRG9mrwLfAWlmtt7MRvqdSUREoodzjt/9ewELNmTz+OV9aNu0nt+Rql1Ejeidc1cdYn7bMEUREZEoNGnGOt7IWM9tp3bk9G7N/Y4TFhE1ohcREakuc9ft4v53F3Ji52TuPL2z33HCRkUvIiJRb/uefG6ekEFyYm2euKIPMbWi9+C78iJq072IiEhVKy5x3D5pNtv2FvDW6GNpVC/e70hhpRG9iIhEtUc/WsI3y7fz5wt70LNVA7/jhJ2KXkREotaHCzfz1BcruGpgKpcPaO13HF+o6EVEJCqtzNrD3a/PpXerBvzhgm5+x/GNil5ERKLO3vwiRk/IIDbGeGp4f2rHRvdJcQ5GB+OJiEhUcc5x31vzWL51Dy/fMIiWDev4HclXGtGLiEhUefGb1XwwbxN3nZnG8Z2a+h3Hdyp6ERGJGtNX7eCByYs5s1tzbjm5g99xIoKKXkREosLW7Dx+9sosWjeuy98u7x3Vv0h3OLSPXkREAq+wuIRbJs5iT14RE0YOIikhzu9IEUNFLyIigffA5MXMXLOTJ67sQ1qLRL/jRBRtuhcRkUB7d84GXvxmNdcf15YL+7T0O07EUdGLiEhgZW7O5pdvzWdA20b8+pyufseJSCp6EREJpOy8QkaPz6B+Qiz/urofcTGqtIrov4qIiAROSYnjrtfnsn7nPp4a1o9mSQl+R4pYKnoREQmcp79cwceLtvDrc7oyoG1jv+NENBW9iIgEytfLsnj0oyVc0PsYrj+urd9xIp6KXkREAmP9zlxuf3U2nZol8tAlPXVSnEpQ0YuISCDkFRZzy8RZFBU7nh7ej7rxOhVMZei/koiIBML/vb+Qeet3M+aa/rRPru93nMDQiF5ERCLeazPW8ur0ddxycgfO7N7C7ziBoqIXEZGINm/9Ln737kKO79iUu85M8ztO4KjoRUQkYu3YW8DNE2aRXL82/7iqLzG1dPDd4dI+ehERiUjFJY47Js0mKyefN0YPoXG9eL8jBZKKXkREItLfP1nK18u28eBPetK7dUO/4wSWNt2LiEjE+WTRFp78bDlXpLfmqoGpfscJtIgqejMba2ZbzWxBmWmPmFmmmc0zs3fMTB/rRESi2Opte/n563Po2bIB/3dhd7/jBF5EFT0wDhhabtrHQA/nXC9gKfCrcIcSEZHwyC0oYvSEDGJqGU8N60dCXIzfkQIvooreOfcVsKPctI+cc0Xeze+BVmEPJiIi1c45x6/ens+SLTk8cWVfWjeu63ekqBBRRV8JNwBT/A4hIiJV7+Xv1vDunI384vTOnNQ52e84USMwRW9mvwGKgIkHmD/KzGaa2cysrKzwhhMRkaMyc/UO/vTBIk7v2oyfndLR7zhRJRBFb2bXAecBw5xzrqJlnHNjnHPpzrn05GR9EhQRCYqtOXncMnEWLRvV4dHL+1BLJ8WpUhH/PXozGwrcC5zknMv1O4+IiFSdwuISbn1lNtl5hbx0w0Aa1InzO1LUiagRvZm9CnwHpJnZejMbCfwTSAQ+NrM5ZvaMryFFRKTK/HVKJtNX7eChn/Sia0qS33GiUkSN6J1zV1Uw+YWwBxERkWr3wbyNPP/fVVx3bFsu6tvS7zhRK6JG9CIiUjMs3ZLDvW/Oo3+bRvz6nK5+x4lqKnoREQmrnLxCRo/PoG58LE8N60d8rKqoOkXUpnsREYluzjnufmMua3bkMvHGQTRPSvA7UtTTxygREQmbZ79ayYcLt/Crs7swuH0Tv+PUCCp6EREJi2+Wb+PhqZmc2yuFkce38ztOjaGiFxGRardx1z5ue3U27ZPr8/AlvTDTSXHCRUUvIiLVKr+omJsnzqKgqIRnhvenXm0dHhZO+q8tIiLV6o/vL2Luul08M7wfHZvV9ztOjaMRvYiIVJs3Zq5j4rS13HRSe4b2SPE7To2kohcRkWqxYMNufvvvBRzboQn3nJnmd5waS0UvIiJVblduAaMnZNC4Xjz/uKovsTGqG79oH72IiFSpkhLHHZPmsCU7j9dvGkLT+rX9jlSj6SOWiIhUqSc+XcaXS7O4//zu9E1t5HecGk9FLyIiVeazzC088ekyLu3fimGDUv2OI6joRUSkiqzZvpc7J82hW0oSf76oh06KEyFU9CIictT2FRQzesIszIxnhvcnIS7G70ji0cF4IiJyVJxz/Oad+WRuzmbsdQNIbVLX70hShkb0IiJyVCZMW8vbszdwx2mdOCWtmd9xpBwVvYiIHLGMNTv54/sLOSUtmdtP7eR3HKmAil5ERI5IVk4+t0zMIKVBHf5+RV9q1dLBd5FI++hFROSwFRWXcNurs9iVW8jbtwygQd04vyPJAajoRUTksD3y4RK+X7mDRy/rTfdjGvgdRw5Cm+5FROSwTJm/iWe/Wsk1g9twSf9WfseRQ1DRi4hIpS3fmsPdb8ylb2pDfndeN7/jSCWo6EVEpFL25Bdx0/gMEuJieGpYP+JjVSFBoH30IiJySM457n1zLqu27WXCjYNIaVDH70hSSfo4JiIih/T816uYPH8z9w3twrEdmvodRw6Dil5ERA7quxXbeWhqJmf3aMGoE9v7HUcOU0QVvZmNNbOtZragzLTGZvaxmS3zrvXjxiIiYbJp9z5ufWUWbZvU5ZHLeusX6QIooooeGAcMLTftl8CnzrlOwKfebRERqWYFRSXcMnEWeYXFPHtNf+rX1mFdQRRRRe+c+wrYUW7yhcBL3t8vAReFNZSISA315/8sYvbaXTx8aW86Nkv0O44coYgq+gNo7pzb5P29GWjuZxgRkZrg7Vnrefm7NYw6sT3n9krxO44chSAU/X7OOQe4iuaZ2Sgzm2lmM7OyssKcTEQkeizamM2v35nP4PaNufesNL/jyFEKQtFvMbMUAO96a0ULOefGOOfSnXPpycnJYQ0oIhItducWMnpCBg3qxPHkVf2IjQlCTcjBBOEVfA+41vv7WuBdH7OIiEStkhLHz1+fw6bd+3hqWH+SE2v7HUmqQEQVvZm9CnwHpJnZejMbCTwEnGFmy4DTvdsiIlLF/vn5cj7L3MrvzutG/zb6JnO0iKjvSjjnrjrArNPCGkREpIb5fMlWHv9kKT/p25JrBrfxO45UoYga0YuISPit25HLnZPmkNY8kb9c3FMnxYkyKnoRkRosr7CY0RMyKHGOZ6/pT534GL8jSRWLqE33IiISPs45fvvvBSzcmM0L16bTpkk9vyNJNdCIXkSkhnp1+jrezFjP7ad25LSuOhdZtFLRi4jUQHPW7eIP7y3kpM7J3HF6Z7/jSDVS0YuI1DDb9+Rz84QMmiXV5okr+xBTSwffRTPtoxcRqUGKiku47dXZbN9bwNs3H0vDuvF+R5JqphG9iEgN8ujHS/l2xXb+fFEPerRs4HccCQMVvYhIDTF1wWae/mIFVw9K5fL01n7HkTBR0YuI1AArsvZw9xtz6d2qAfef383vOBJGKnoRkSi3N7+I0eMziI+txVPD+1M7VifFqUlU9CIiUcw5x31vzWNF1h6evKovLRvW8TuShJmKXkQkio35aiUfzNvE3WelcVzHpn7HER/o63UiIlHIOcc/P1vOox8v5ZyeLbj5pA5+RxKfqOhFRKJMSYnjjx8sYty3q7m4b0sevrSXfpGuBlPRi4hEkYKiEu5+Yy7vzd3IyOPb8ZtzulJLZ76r0VT0IiJRYm9+EaMnZPD1sm3cN7QLo09qr5G8qOhFRKLBjr0FXD9uBvPX7+LhS3px+QCdEEdCVPQiIgG3Ydc+rnlhGut37uOZ4f05s3sLvyNJBKnyr9eZ8U8zSsxwZnStxPK/MWOvt/y5R/B8N5qxw7v/zUeWWkQkmJZtyeHSp78lKyef8TcMVMnL/6iO79H/ETAgH1h2qIWd4y9AkXdzzuE+mXM8D2z2bs4/3PuLiARVxpqdXPbsdxSVOF4bNYRB7Zv4HUkiUHVsuu/lXS92bn+BH5AZbYEkIMs5Nhzuk5lRG+js3VxwuPcXEQmiz5ds5ZYJs2iWVJvxNwwitUldvyNJhDrkiN6M08psGh/hTWtoxiIz/l7BXXp61/PLPEa8Gb8341sztniPN7Tc8llmPGXGWjPmmtGvzP3bmvGqGd+bscaMT83o4s3uBsQA65xj12Guv4hI4Px79gZ++tJM2jWtx5ujj1XJy0Edsuid41PgDe9mujdtFzCeije1/6jozagFvAucA5wJfAQ0AnaXW34fcDtwL6GtAi96928G/Bc4ETiF0K6BU4EHKno+EZFo9sJ/V3Hna3NIb9uISTcNJjmxtt+RJMJVdh/9DO86vcy0M4HnzMj0Lld500s33ZcW7z3AUOA+59gDdAUcP2xmL11+vLepP9e7nVbm/i2Bdwjtarjcm/75AZ5PRCTqOOd4eGomf/pgEUO7t2Dc9QNJSojzO5YEQGX30c/0rvuYEQuUAMd79y8t5M3e6L30h47ne7dvI3Rg3rdmGNAFWOMcOd5ypSPy0g8THb3r0v3153vXJwNTgdXARc7xbrn7q+hFJCoVFZfwm3cW8NrMdVw1MJU/X9SDGJ3tTiqpskW/gNCm9TpAd6Ap8JZzXFl2ITPSvGV2OscGM1oSGo0vco5CM7oB9YDPvOXLHki32rse5F1P9q5Lvytyu3P773e1GS2cYzMa0YtIFMsrLOb2V2fz0aIt3HZqR35xRmed7U4OS6U23Xub1Od6N9OB+4BxFSxafnS9Dyj2LgDDy83vyg8fNuqakUxoX/4u4GFv+twyy+IdpHcLsMWMpoQ+CBQBmZVZFxGRoMjOK+TasdP5aNEW/nB+N+46M00lL4ftcL5HX7pp/adAnHNMrWCZ0qLvYsZlzrED+APQyow3gb7e/MvMaMKPN9s/DkwDZgOnOMc6b961wEew9yGzz3Ng0ifQZitY7TL3LwHuP4x1ERGJaFtz8rji2e/JWLOTJ67sw3XHtfM7kgSUOecqt2Doq3UvEdrf3t85FlZnsB8/t7UkdOR9N+fcPjN7HZjsnBtX0fLp6elu5syZFc0SEYl4a7bv5ZoXppOVk88z1/TnpM7JfkeSADCzDOdcevnpBx3Re99//5V3s3Rz+23hLPkyYoE6ZhYL1AU2+pBBRKRaLdiwm0ue/o6cvEJe+ekglbwctUMdjNcCuMmM4wgdZDfMOV6p/lg/5pzbYGZ/A9YS2u//kXPuo3DnEBGpTt+t2M6ol2eSmBDLy6OG0LFZot+RJAoctOidYy3QNjxRDszMGgEXAu0IHaj3hpkNd85NKLPMKGAUQGpqqi85RUSO1NQFm7l90mxSG9fl5RsGckzDOn5HkihRHT9qUx1OB1Y557Kcc4XA28CxZRdwzo1xzqU759KTk7WpS0SCY9L0tdwyMYPuxyTxxk1DVPJSpYLye/RrgcFmVpfQpvvT+OEkPiIigeSc46kvVvDIh0s4qXMyTw/vR934oLwtS1AE4l+Uc26amb0JzCL0nfnZwBh/U4mIHLmSEsef/rOIF79ZzUV9juGRy3oTFxOUjawSJIEoegDn3P3ou/IiEgUKikq45825vDtnIzcc147fntuVWjqlrVSTwBS9iEg0yC0oYvSEWXy1NIt7h6Zx80kddLY7qVYqehGRMNm5t4Drx81g3vpdPPSTnlw5UN8QkuqnohcRCYONu/YxYux01u7I5enh/Tmre4tD30mkCqjoRUSq2fKtOVzzwnT25BXx8g0DGdy+id+RpAZR0YuIVKPZa3dy/bgZxNaqxaSbBtP9mAZ+R5IaRkUvIlJNvlyaxejxGSQn1mb8yIG0aVLP70hSA6noRUSqwbtzNnDX63Pp3DyRcTcMoFligt+RpIZS0YuIVLEXv1nF/72/iEHtGvPctekkJcT5HUlqMBW9iEgVcc7x6EdL+efnyzmzW3P+cVVfEuJi/I4lNZyKXkSkChSXOH777/m8On0dVw5ozZ8v6kGsTmkrEUBFLyJylPIKi7lz0hymLtzMz07pwN1npulsdxIxVPQiIkchO6+QUS/P5PuVO/j9ed244fh2fkcS+REVvYjIEcrKyefasdNZuiWHv1/Rh4v6tvQ7ksj/UNGLiByBtdtzuWbsNLZm5/P8temcnNbM70giFVLRi4gcpkUbs7n2xekUFpfwyk8H0Te1kd+RRA5IRS8ichi+X7mdn740k/oJsbz60yF0bJbodySRg1LRi4hU0kcLN3Prq7Np3agOL48cRMuGdfyOJHJIKnoRkUp4fcY6fvn2PHq1asjY6wbQuF6835FEKkVFLyJyEM45nv5yBQ9PXcKJnZN5elg/6tXWW6cEh/61iogcQEmJ4y+TF/PCf1dxQe9j+NtlvYmP1dnuJFhU9CIiFSgsLuHeN+fxzuwNXHdsW35/Xjdq1dLZ7iR4VPQiIuXkFhRxy8RZfLEki3vOSuOWkzvolLYSWCp6EZEyduUWcP24Gcxdt4sHf9KTqwam+h1J5Kio6EVEPJt272PEC9NZsyOXp4b1Y2iPFL8jiRw1Fb2ICLB86x5GvDCN7LwiXrp+IEM6NPE7kkiVUNGLSI03Z90urn9xOjG1jEmjBtOjZQO/I4lUGRW9iNRoXy3NYvSEDJrUj2f8DYNo27Se35FEqpSKXkRqrPfmbuSu1+fQsVkiL10/gGZJCX5HEqlygTnzg5k1NLM3zSzTzBab2RC/M4lIcI37ZhV3TJpN39RGTBo1WCUvUStII/ongKnOuUvNLB6o63cgEQke5xyPf7yUf3y2nDO6NefJq/qSEBfjdyyRahOIojezBsCJwHUAzrkCoMDPTCISPMUljt+9u4BXpq3l8vRWPHBxT2JjArNhU+SIBKLogXZAFvCimfUGMoA7nHN7/Y0lIkGRX1TMnZPmMGXBZm45uQP3nJWms91JjRCUj7KxQD/gaedcX2Av8MuyC5jZKDObaWYzs7Ky/MgoIhEqJ6+Q68bOYMqCzfz23K7cO7SLSl5qjKAU/XpgvXNumnf7TULFv59zboxzLt05l56cnBz2gCISmbJy8rlyzPfMWL2Dx6/ozY0ntPc7kkhYBWLTvXNus5mtM7M059wS4DRgkd+5RCSyrduRyzUvTGNzdh7PXZvOKWnN/I4kEnaBKHrPbcBE74j7lcD1PucRkQi2eFM2I8ZOp6CohIk3DqZ/m0Z+RxLxRWCK3jk3B0j3O4eIRL7pq3Yw8qUZ1IuP5Y3RQ+jcPNHvSCK+CUzRi4hUxseLtnDrK7No2agO40cOomXDOn5HEvGVil5EosbrM9fxq7fn0+OYJF68fiCN68X7HUnEdyp6EQk85xzPfq3qtXkAABe3SURBVLWSh6ZkckKnpjwzvD/1auvtTQRU9CIScCUljgenLOa5r1dxfu9jePSy3sTHBuWbwyLVT0UvIoFVWFzCfW/N4+1ZG7h2SBvuP787tWrpRDgiZanoRSSQ9hUU87NXZvFZ5lbuOqMzt57aUWe7E6mAil5EAmdXbgEjX5rJrLU7+cvFPRg2qI3fkUQilopeRAJl8+48RoydxuptuTx1dT/O7pnidySRiKaiF5HAWJG1hxEvTGf3vkLG3TCAYzs09TuSSMRT0YtIIMxdt4vrx83AgEmjBtOjZQO/I4kEgopeRCLe18uyuGl8Bo3rxTN+5CDaNa3ndySRwFDRi0hE+2DeRn7+2hw6JNfn5RsG0iwpwe9IIoGioheRiPXyd6u5/72FDGjTmOeuTadBnTi/I4kEjopeRCKOc47HP1nGPz5dxuldm/HPq/uREBfjdyyRQFLRi0hEKS5x3P/eAiZ8v5bL+rfiwZ/0JDZGp7QVOVIqehGJGPlFxfzitbn8Z/4mRp/UgfuGpulsdyJHSUUvIhFhT34RN42fyTfLt/Obc7ry0xPb+x1JJCqo6EXEd9v25HP9izNYtCmbRy/rzSX9W/kdSSRqqOhFxFfrduQyYux0Nu3ex3Mj+nNql+Z+RxKJKip6EfFN5uZsRrwwnbzCYibeOIj+bRr7HUkk6qjoRcQXM1bvYOS4GdSJj+GN0ceS1iLR70giUUlFLyJh98miLfzslVm0bFiHl0cOpFWjun5HEolaKnoRCas3Zq7jl2/Pp/sxSbx43QCa1K/tdySRqKaiF5GwefbLFTw4JZPjOzblmWv6U7+23oJEqpv+LxORauec48EpmYz5aiXn9Urh0ct7UztWp7QVCQcVvYhUq6LiEu57az5vzVrPiCFtuP/87sTU0tnuRMJFRS8i1WZfQTG3vjKLTzO38vPTO3P7aR11SluRMFPRi0i12J1byMiXZpCxdid/vqgHwwe38TuSSI0UqKI3sxhgJrDBOXee33lEpGJbsvMY8cJ0Vm3by7+u7sc5PVP8jiRSYwWq6IE7gMVAkt9BRKRiK7P2cM0L09mVW8CL1w/guI5N/Y4kUqMF5keezawVcC7wvN9ZRKRi89bv4tJnviOvsJhJo4ao5EUiQJBG9H8H7gV0nkyRCJNfVMz479bw+MdLaVg3nvEjB9I+ub7fsUSEgBS9mZ0HbHXOZZjZyQdYZhQwCiA1NTWM6URqrpISx/vzNvLIh0tYv3MfJ3VO5uFLe9E8KcHvaCLiCUTRA8cBF5jZOUACkGRmE5xzw0sXcM6NAcYApKenO39iitQc3y7fxgNTFrNgQzbdj0nioZ/04vhO2lQvEmkCUfTOuV8BvwLwRvR3ly15EQmfJZtzeHDKYr5YkkXLhnX4+xV9uKD3MdTSSXBEIlIgil5E/Ld5dx6PfbyENzPWU792LL8+pwsjhrQlIU6nshWJZIEreufcF8AXPscQqTFy8gp59suVPP/flZSUwA3HtePWUzvSsG6839FEpBICV/QiEh6FxSW8Mm0tT3y6jB17C7iwzzHcfWYarRvrt+NFgkRFLyI/4pxj6oLNPPzhElZt28vg9o359Tld6dWqod/RROQIqOhFZL+Zq3fwwOTFzFq7i87N6/PidQM4OS1ZP0QjEmAqehFhRdYeHp6ayYcLt9A8qTZ/vaQnl/ZvrZ+TFYkCKnqRGiwrJ58nPl3Kq9PXUScuhrvP7MwNx7ejbrzeGkSihf5vFqmBcguKeP7rVTz75Qryi0oYNiiV20/rRNP6tf2OJiJVTEUvUoMUFZfwZsZ6Hvt4KVtz8jm7RwvuOStN56UXiWIqepEawDnHZ5lbeWhKJsu27qF/m0Y8Pbwf/ds09juaiFQzFb1IlJu7bhcPTF7MtFU7aNe0Hs8M789Z3ZvrSHqRGkJFLxKl1m7P5ZGPlvD+3I00qRfPny7szpUDU4mLqeV3NBEJIxW9SJTZubeAJz9bzvjvVxNbqxa3n9qRn57YnsSEOL+jiYgPVPQiUSKvsJhx367mX58vZ29+EZent+bnZ3TWb8OL1HAqepGAKylx/HvOBv724RI27s7jtC7NuO/sLnRunuh3NBGJACp6kQD7elkWD07OZNGmbHq2bMDfLu/NsR2a+h1LRCKIil4kgBZtzObBKYv5etk2WjWqwz+u6st5PVOopVPWikg5KnqRANm4ax+PfrSUt2evJykhjt+e25VrhrShdmyM39FEJEKp6EUCIDuvkKc+X8GL36zCAaNObM8tJ3WkQV0dSS8iB6eiF4lgBUUlTPh+DU9+toxd+wq5uE9LfnFmZ1o1qut3NBEJCBW9SARyzvGf+Zt4eOoS1u7I5fiOTfnl2V3o0bKB39FEJGBU9CIRZtrK7TwweTFz1++mS4tEXrphICd2aqpT1orIEVHRi0SI5VtzeGhKJp8s3kqLpAQeubQXP+nXihgdSS8iR0FFL+Kzrdl5PP7JMl6bsZZ68bHcOzSNG45rR0KcjqQXkaOnohfxyd78IsZ8tZLnvl5JYXEJ1x7blttO7UTjevF+RxORKKKiFwmzouISJs1Yx98/Wca2Pfmc2yuFe89Ko02Ten5HE5EopKIXCRPnHB8v2sJDUzNZmbWXgW0b89yI/vRNbeR3NBGJYip6kTCYtXYnD05ezIzVO+mQXI/nRqRzetdmOpJeRKqdil6kGq3etpeHP8xk8vzNNK1fm79c3IMr0lsTG1PL72giUkOo6EWqwfY9+Tz52XImfL+G+Nha3Hl6J356Qnvq1db/ciISXoF41zGz1sDLQHPAAWOcc0/4m0rkf+0rKGbsN6t45osV5BYWc8WA1tx5WieaJSX4HU1EaqhAFD1QBNzlnJtlZolAhpl97Jxb5HcwEYDiEsdbs9bz2EdL2ZydxxndmnPf0DQ6Nkv0O5qI1HCBKHrn3CZgk/d3jpktBloCKnrxlXOOL5dm8dCUTDI359C7dUOeuLIPg9o38TuaiAgQkKIvy8zaAn2Baf4mkZpuwYbdPDhlMd8s306bJnX519X9OKdnCx1JLyIRJVBFb2b1gbeAO51z2eXmjQJGAaSmpvqQTmqK9TtzefSjpbwzewON6sZx//ndGDaoDfGxOpJeRCJPYIrezOIIlfxE59zb5ec758YAYwDS09NdmONJDbA7t5B/fbGccd+sxgxuPrkDN5/cgaSEOL+jiYgcUCCK3kLbQl8AFjvnHvM7j9Qs+UXFjP9uDU9+tpzsvEIu6deKX5zRmWMa1vE7mojIIQWi6IHjgGuA+WY2x5v2a+fcZB8zSZQrKXG8P28jj3y4hPU793FS52R+eXYXuqYk+R1NRKTSAlH0zrn/AjrCScLm2xXbeHByJvM37KZbShITRvbi+E5N/Y4lInLYAlH0IuGyZHMOD01ZzOdLsmjZsA6PX9GbC3u3pFYtfc4UkWBS0YsAm3fn8fjHS3kjYx31asfyq7O7cO2xbUmIi/E7mojIUVHRS42Wk1fIs1+u5Pn/rqS4xHH9ce249ZSONKoX73c0EZEqoaKXGqmwuIRXp6/liU+WsX1vARf0PoZ7zkqjdeO6fkcTEalSKnqpUZxzTF2wmYc/XMKqbXsZ3L4xL57TlV6tGvodTUSkWqjopcaYuXoHD0xezKy1u+jUrD5jr0vnlLRmOmWtiEQ1Fb1EvRVZe3h4aiYfLtxCs8Ta/PWSnlzSrxWxMTplrYhEPxW9RK2snHz+8ekyXpm+loTYWtx1RmdGntCOuvH6Zy8iNYfe8STq5BYU8fzXq3j2yxXkFZVw9cBU7ji9E03r1/Y7mohI2KnoJWoUFZfwZsZ6Hvt4KVtz8hnavQX3DE2jQ3J9v6OJiPhGRS+B55zjs8ytPDQlk2Vb99AvtSFPDetHetvGfkcTEfGdil4Cbd76XTwweTHfr9xBu6b1eGZ4P87q3kJH0ouIeFT0Eji5BUUs3pTDuG9X8/7cjTSpF88fL+zOVQNTidOR9CIiP6Kil4jlnGP9zn1kbs5h8abs/Zc1O3JxDhLianHbqR0ZdWJ7EhPi/I4rIhKRVPQSEfYVFLNkS6jQMzdls3hTDos3Z5OTV7R/mbZN6tI1JYmL+7aia0oi/ds0oomOpBcROSgVvYSVc45Nu/PKjNBDhb56215KXGiZevExdElJ4sI+x9A1JYkuLZLo0iKRerX1z1VE5HDpnVOqTV5hMcu27GHxpmwWecWeuTmH3fsK9y/TunEdurZI4vxeoVLvlpJEq0Z19PvvIiJVREUvR805x5bs/NAIfbM3St+UzcqsPftH6XXjY0hrkcg5PVPolpJI15Qk0lokat+6iEg1U9HLYckv+mGUvnhTDpmbQyP1nbk/jNJbNqxD15QkzunRgi4pSXRNSaJN47oapYuI+EBFLxVyzpG1J3//6Lz0siJrL8XeMD0hrhZpzRM5q3sLunqFntYikQZ1NEoXEYkUKnqhoKiE5Vv37B+dl5b79r0F+5c5pkECXVKSOKNb8/2l3rZJPWI0ShcRiWgq+hpm2578/aPzzE05LNqUzYqsPRQWh0bp8bGhUfppXZvRpUWSV+qJNKwb73NyERE5Eir6KFVYXMLKrL37S32Rd8R7Vk7+/mWaJ9Wma0oSp3RpFir0Fom0a1pPv9MuIhJFVPRRYMfegh9/L31TNsu37qGguASA+JhadGxWnxM7JdM1JZFuKUl0SUmicT2N0kVEop2KPkCKiktYtW2v9530H45435L9wyg9OTE0Sj+hU9P9+9LbJ9fTOeBFRGooFX2E2pVb8KMj3jM357B0Sw75RaFRelyM0SG5Psd1CBV6F++76U11SlgRESlDRe+z4hLHqm17/+eI90278/Yv06RePF1TkhgxpM3+UXqH5PrEx2qULiIiB6eiD6Pd+wq9H2zJ3v+LbEu25JBXGBqlx9QyOibXZ2C7xvsLvWtKIsn1a+v31UVE5Iio6KtBSYljzY7cH51oZvGmHDbs2rd/mUZ14+iaksSwQW3o0iK02b1T8/rUjo3xMbmIiESbwBS9mQ0FngBigOedcw/5HAmAnLxClnij80XeZvclm3PYV1gMQC2D9sn16demEcMGp3pfY0uieZJG6SIiUv0CUfRmFgP8CzgDWA/MMLP3nHOLwpWhpMSxbmfuj/ajL96czbodP4zSkxJi6ZqSxBUDWtPN2/TeqXl9EuI0ShcREX8EouiBgcBy59xKADObBFwIVHvRr9m+l1+8PpfMTdnsLQiN0s2gXdN69GrVkCvSW+/fn57SIEGjdBERiShBKfqWwLoyt9cDg8ouYGajgFEAqampVfbEjerFE2PGpf1beV9jSyKteSJ14jVKFxGRyBeUoj8k59wYYAxAenq6q6rHTUqI4/XRQ6rq4URERMIqKF/E3gC0LnO7lTdNREREDiIoRT8D6GRm7cwsHrgSeM/nTCIiIhEvEJvunXNFZnYr8CGhr9eNdc4t9DmWiIhIxAtE0QM45yYDk/3OISIiEiRB2XQvIiIiR0BFLyIiEsVU9CIiIlFMRS8iIhLFVPQiIiJRTEUvIiISxVT0IiIiUUxFLyIiEsVU9CIiIlHMnKuyH3qLGGaWBayp4odtCmyr4sf0Q7SsB2hdIlW0rEu0rAdoXSJRdaxHG+dccvmJUVn01cHMZjrn0v3OcbSiZT1A6xKpomVdomU9QOsSicK5Htp0LyIiEsVU9CIiIlFMRV95Y/wOUEWiZT1A6xKpomVdomU9QOsSicK2HtpHLyIiEsU0ohcREYliKvoyzGyomS0xs+Vm9ssK5tc2s9e8+dPMrG34U1ZOJdblOjPLMrM53uVGP3IeipmNNbOtZrbgAPPNzP7hrec8M+sX7oyVVYl1OdnMdpd5TX4f7oyVYWatzexzM1tkZgvN7I4KlgnE61LJdQnK65JgZtPNbK63Lv9XwTKBeA+r5LoE4j0MwMxizGy2mX1Qwbzqf02cc7qEdl/EACuA9kA8MBfoVm6ZW4BnvL+vBF7zO/dRrMt1wD/9zlqJdTkR6AcsOMD8c4ApgAGDgWl+Zz6KdTkZ+MDvnJVYjxSgn/d3IrC0gn9fgXhdKrkuQXldDKjv/R0HTAMGl1smKO9hlVmXQLyHeVl/AbxS0b+jcLwmGtH/YCCw3Dm30jlXAEwCLiy3zIXAS97fbwKnmZmFMWNlVWZdAsE59xWw4yCLXAi87EK+BxqaWUp40h2eSqxLIDjnNjnnZnl/5wCLgZblFgvE61LJdQkE77/1Hu9mnHcpfxBWIN7DKrkugWBmrYBzgecPsEi1vyYq+h+0BNaVub2e//0ffv8yzrkiYDfQJCzpDk9l1gXgEm+z6ptm1jo80apcZdc1KIZ4myunmFl3v8McireZsS+hEVdZgXtdDrIuEJDXxdtEPAfYCnzsnDvg6xLh72GVWRcIxnvY34F7gZIDzK/210RFX3O9D7R1zvUCPuaHT5Tin1mETmHZG3gS+LfPeQ7KzOoDbwF3Ouey/c5zNA6xLoF5XZxzxc65PkArYKCZ9fA705GqxLpE/HuYmZ0HbHXOZfiZQ0X/gw1A2U+ErbxpFS5jZrFAA2B7WNIdnkOui3Nuu3Mu37v5PNA/TNmqWmVet0BwzmWXbq50zk0G4sysqc+xKmRmcYSKcaJz7u0KFgnM63KodQnS61LKObcL+BwYWm5WUN7D9jvQugTkPew44AIzW01oF+qpZjah3DLV/pqo6H8wA+hkZu3MLJ7QQRHvlVvmPeBa7+9Lgc+cdwRFhDnkupTbX3oBoX2TQfQeMMI7ynswsNs5t8nvUEfCzFqU7pszs4GE/v+MuDdhL+MLwGLn3GMHWCwQr0tl1iVAr0uymTX0/q4DnAFkllssEO9hlVmXILyHOed+5Zxr5ZxrS+h9+DPn3PByi1X7axJblQ8WZM65IjO7FfiQ0FHrY51zC83sj8BM59x7hN4QxpvZckIHVV3pX+IDq+S63G5mFwBFhNblOt8CH4SZvUroqOemZrYeuJ/QgTk4554BJhM6wns5kAtc70/SQ6vEulwK3GxmRcA+4MpIfBMmNEq5Bpjv7UMF+DWQCoF7XSqzLkF5XVKAl8wshtCHkdedcx8E8T2Myq1LIN7DKhLu10RnxhMREYli2nQvIiISxVT0IiIiUUxFLyIiEsVU9CIiIlFMRS8iIhLFVPQiUilmvG+GM6PEjHqVWP5JM4q9+xz2aWPN+K0Zud79zz6y1CKir9eJSKWYMZDQeeBXOEfHSizfmNCJZfKA+s5RfJjPZ0AOUA9o7RzrDz+1iGhELyKV1cu7nn+4yx9uyXs6ECr5XSp5kSOnohepocw4z4zt3qbxn3vTWpjxwQE2zff0rueXeYwkMx4z4xszdpux2Wz/cqXXhWa8YMYWb7l2Ze7f03u+78zYYMY7ZqQc6PlE5PCp6EVqKOf4gNBpeAHuNqMB8BzwM+fYW8FdflS8ZtQFvgDaAycB84DmwLZyy2c5x0jgceBYQj/biRldgG+AFsDxwFjgIuCeip5PRI6Mil6kZhtLaD/6McB3wN+AgWZklrmc6C1bvngfJfT77Xc4RxHQBdjuHKU/XlO66f5F7zrXu07zrv8EJBL6Va8mhH6YxBH68FD2/ip6kaOgohepwZwjlx9+2XCzc3wJDCRUxqWXdd7m9KaEDqxbZkYSoR8RWekca8xI9uaXjvYN9h9pP8O7Lj2Ab4MZMYR+9AZCP+LxDjATOMW5/Xk0ohepAip6kRrMjOMIjeYBTjajq3Pc4xxW5rKKH0bXi70D63oCCfzw06EDvOvSUm4P1AfyYf8If5B3PZnQSL6ud/ty5zjO27zf1Yy6ZtThhw8GC6pshUVqIBW9SA1lRktCP8l6MTAFMH7YP15e+dH1Hu+69Gj64eXmly5fC6hjRjdCHwZWA2OcYxewxlumq5fnXOB0bytDd+++a51j95Gsn4iEqOhFaiAzagPPAKOdYx/wV2/WcDMeq+AupcV9shknOMdc7/7Hm/Ey0Nabf5O32b50+S+Ad4GphD5MnOocOd68i4BvgefNeB84CxhR7vkamnHbUa2sSA2nE+aIiIhEMY3oRUREopiKXkREJIqp6EVERKKYil5ERCSKqehFRESimIpeREQkiqnoRUREopiKXkREJIqp6EVERKLY/wPYRehcsZQCzQAAAABJRU5ErkJggg==\n",
"text/plain": [
"set_position
\n",
"\n",
"The boundaries of the four corners (left, top, right, bottom) of the graph area represented by the Axes object are managed as objects of the Spine class.\n",
"\n",
"Since \n",
" left
represents y-axis and bottom
represents the x-axis, each axis can be moved by changing the value of left
and bottom
key."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 374
},
"executionInfo": {
"elapsed": 665,
"status": "ok",
"timestamp": 1648474800812,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "QIIltkVy4kAF",
"outputId": "9e2566f9-6d8f-44d5-ff16-91ce740d90e2"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFlCAYAAAAQ8morAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdf7H8deXXQVFATdQQBQVd0VEQM1c0jbNNtvcKmvSasZmqd80zdRMMzVLNTOlbWpqlpYtZqVlpaa4IuK+ISCCGyAossP9/v443AZzlwvn3Mvn+XjcR3DvOfe8JeVzv+ec7+ertNYIIYQQwjm5mR1ACCGEENdOCrkQQgjhxKSQCyGEEE5MCrkQQgjhxKSQCyGEEE5MCrkQQgjhxDzMDnAtAgMDdVhYmNkxhBBCiHqxdevWXK110IVec8pCHhYWRlJSktkxhBBCiHqhlDp8sdfk1LoQQgjhxKSQCyGEEE5MCrkQQgjhxJzyGvmFVFRUkJWVRWlpqdlRXIaPjw8hISF4enqaHUUIIcRFuEwhz8rKws/Pj7CwMJRSZsdxelpr8vLyyMrKIjw83Ow4QgghLsJlTq2XlpYSEBAgRdxBlFIEBATIGQ4hhLA4lynkgBRxB5OfpxBCWJ9LFXIhhBCioZFCLoQQQjgxhxRypdQcpdRJpdSui7yulFL/UUqlKqV2KKX61nhtolLqYPVjoiPyCENJSQlDhgyhqqrqotuUl5czePBgKisr6zGZEEIIR3HUiPw9YNQlXh8NdKp+TAVmASilWgB/BAYAMcAflVLNHZSpwZszZw7jxo3D3d39ott4eXkxbNgwFi9eXI/JhBBCOIpDCrnW+kfg1CU2GQPM14aNgL9Sqg1wA7BSa31Ka50PrOTSHwgsbdeuXcTFxf30fXJyMsOGDbum9zp69Ci33347ffr0oUuXLmzevJl9+/Zx/fXX07t3b4YPH05ubu5P28+bN49+/frRs2dPEhISAFi4cCFjxoz5aZuhQ4eycuVKAJ599lkef/xxAMaOHcvChQuvKadwbaUVVew/XkhSxqlzHnuPnaGk/OJnekQd0hqK8uDYDkj9HtLXQlYSHN8Fp9KhSs6uNTT1NY88GDhS4/us6ucu9vx5lFJTMUbztG/f/pIHe37ZbvYcPVOLuOeLatuUP97S7dLbREWRlpZGVVUV7u7uzJgxg1deeeWcbQYNGkRhYeF5+/7zn/9k+PDhAFRWVjJ69GhefPFFbr75ZoqLi6moqCAuLo6FCxfSu3dvXn75ZV599VVefPFFCgsLefnll0lJScHLy4uCggLKy8tJS0uj5ipxzz//PM899xwnT55k27ZtfPHFFwB0796dLVu21PInJJxdWWUVW9LzWb3/JHuPnyEjt5ijp0vQ+uL7tGnmQ1hAE7q08WNIZBCxHQLw8bz4GSBxlbSG/HSjWGesheytcDobqsouvo+HDwR1gVbdoXUPiLgegiLrL7Ood07TEEZr/TbwNkB0dPQlfrWYx83NjW7durF7924OHjxIaGgoffv2PWebtWvXXvZ9Pv/8c7p27crNN98MQOPGjVm8eDEJCQn07t0bMD402Auxu7s7JSUlPPXUU0ycOJHo6GiOHj2Kv7//Oe87ePBgtNa88sorrF69+qdT7u7u7nh5eVFYWIifn1+tfw7CeZRWVLFs+1FW7jlBYmouReVVeHm40bVNU2LCWxAW0ISwwMY0b+xFzdmIBcUVZOQWkZ5XRHpuER9uzmRuYgaNPN2JiwhgRFQrbunVlibeTvMrxlpy9sPWebD3CzhdPdbxbQXtY6HLzdC0rfFoEgS2SqgoMR5lZ4x9T+yCAysg5X1j36CuEHUrRI2BllEgU0tdSn39K8sG2tX4PqT6uWzgup89v7q2B7vcyLkuxcbGkpiYyMyZM1mxYsV5r1/JiDwlJYXY2NhzXt+zZw89evT46fudO3cSFRUFGIV+165dLFu2jKlTp/LQQw9xzz33nNfMZefOnRw7doyAgIDzCnZZWRk+Pj7X9ocWTufY6RIWbDjMB5szKSiuINi/Ebf1DWZo55bERQTSyOvqRtWlFVVsTMtj1b6T/LD/JN/vO8lfv97L+Jj2TBgYSkjzxnX0J3EhFaVG4U6aC5nrwc0DOt0A8U9C+BAI7HR1BVhrOJ0F+7+GPUthzd9hzcsQHA2DZkDkaHCTiUuuoL4K+RfAdKXUIowb205rrY8ppb4B/lrjBreRwDP1lKlOxMbGMmnSJKZNm0Zw8PlXCa5kRN66dWu2b9/+0/c5OTkEBweTkpICQFpaGgsWLGDdunUAHDx4kE6dOjF+/Hj27NlDaWkpzZs3p6qqitLSUnx8fDh27Bj33XcfS5cu5YknnmDFihWMGmXcjpCXl0dgYKD0VG8AMvOK+dfK/Xy54xhaa0ZEtWJyfDgDwlvUqgGQj6c713VuyXWdW/InrUnOzGdOYgaz16Xz7to0RnVvza9HdqZDkK8D/zQuwlYFOxbDDy/CmSxoHg7Dn4fe94Jvy2t/X6XAvx0MeMR4FJ6APZ/Dhjdg0b0Q2BkSfgk97gR3+bfv1LTWtX4AHwLHgAqM69wPAo8Cj1a/roA3gEPATiC6xr5TgNTqx+QrOV6/fv30z+3Zs+e858xw4MAB3aZNG3327Nlrfo/CwkJ9yy236KioKN2rVy+9dOlSXVxcrMeMGaO7d++u+/fvr9evX//T9hMnTtSRkZG6T58++v7779clJSVaa62nTJmiV65cqYuKinRsbKz+9ttvtdZar1mzRsfGxv60/8cff6xnzJhxwSxW+bmK2iksrdAvL9+rO/3+a93l2eX6z8t268y8ojo/bnZ+sX5p+V7d7bkVOuKZr/Sfl+3WBcXldX5cp2Czab3/G63fGKj1H5tq/dYQrQ+u1Lqqqm6PW1mh9faP/nfc/0Zrnbambo8pag1I0hepiUpf6k4Wi4qOjtZJSUnnPLd37166du1qUqL/mT59Ov3792fiRPOnxCcnJ/Pqq6+yYMGCS243btw4XnrpJSIjz78hxio/V3FttNZ8mpzNyyv2cbKwjHF9gvntqC60bla/l1FyCsv417f7WZx0hBaNvfj1DZ25O7odbm4N9Frt6WxY9gSkfmeMwIc9B1Fj6/dUt9aw7yv45hkoyISed8PIv9TuLICoM0qprVrr6Au9JhdIHOTQoUN06dKFkpISSxRxgL59+zJ06NDLNoQZO3bsBYu4cG55Z8t4aF4ST328nbb+jfjssTheubt3vRdxgCA/b166vSfLpicQEeTLM5/uZOLczZw808AW5dEati+CmQPh8Hq44W8wbTN0H1f/16uVgq43w2ObYNCvYden8N9oSJ7PJacqCMuREbm4JPm5Oqc1B3J46qPtnCmt4JnRXZg4MMwyo1+tNYu2HOGFZXvw8XTj73f0YkRUK7Nj1b2zOfDlL2Hfl9AuFsbOhIAIs1P9T+5B+PJXxjS3HnfBza+Ct9zTYBUyIheigSivtPHnL/cwcc5mmjf2ZOm0eCbHh1umiIOxqt49Me1Z9ngCbf0b8fD8JJ79fCelFS7cYCZrK7yZAAe/hREvwOSvrVXEwbgrfsJSGPos7FoCb19nNJkRlieFXAgXUVBczoQ5m5i9Lp0JA0NZ9ngCXds0NTvWRXVs6cunj8UxdXAH3t+Yyb3vbCT37CUanTir7Yth7mjw8IKHfzCmk7lZtGmOmzsM+Q1M+MKYk/7uMNj2vtmpxGVIIRfCBWTkFjFu5nqSDxfw6t29eGFMd6fosObt4c7/3diVWff1Zc+xM9w2M5GDJ87vs+CUbFXw7R/gs6nQLgYeXm10WnMG4YPg0XXQbgAsnWZMjXPCy7ANhRRyIZzc5vRTjJ2ZSH5xOe8/NIDb+oSYHemqje7RhsVTB1JaYWPcrPWsO5h7+Z2srKLEmKu9/j/Q/yF44DNoEmB2qqvj2xLu/wR63w8//t0o6FUVZqcSFyCFXAgntnznMe5/dxMtGnvx2WPxxIS3MDvSNevVzp/Pp8UT7N+IiXM389m2LLMjXZuyQnj/DjjwDdz0L+PhrA1X3D1hzOsw5GlIWQgf3G38+YSlSCEXwkl9ueMo0z/cRvfgpnz6WBxhgU3MjlRrwf6N+PjRgQwIb8GMj7azZKuTFfOSfJg/FjI3wO3vGqNxZ6cUDH0GbvkPpK2G9242/pzCMqSQC+GElqZk8+SiFPq292f+gwPwb+xldiSH8fPxZPbE/iR0DOQ3S7bz0ZYjl9/JCs7mwHu3wPEdcPcC6HGH2Ykcq99EGL8QTu6BBeOg9LTZiUQ1KeRCOJnPtmXxq8Up9AttznuTY/B1wRXGGnm5886EaAZ1CuK3n+zgg02ZZke6tKJceO8myEuFexZBl5vMTlQ3Oo+Gu+YbH1bevx1KHbtctLg2UsidyPr163nuuecuuU1JSQlDhgy5bDe3wYMHU1lZ6eiIoo4tTclmxkfbGRAewHuT+7v0MqE+nu68/UA/hnYO4v8+28mizRYt5mWFRlErOAz3L4GOw8xOVLc6j4Y734PsZFh4J5SdNTtRgyeF3InExcXxwgsvXHKbOXPmMG7cuJ/WGr8QLy8vhg0bxuLFix0dUdShdQdz+fXH24kJa8GcSf1p7OW6RdzOx9OdNx/ox5BIo5iv3HPC7EjnqiiFD++B4zuNkWpYgtmJ6kfXW+CO2ZC1xbgBrqKBtdq1GCnkDrRr1y7i4uJ++j45OZlhw67t0/m8efPo168fPXv2JCHB+OVw5513/rQM6rhx43j22WcZPHgw7du357vvvgNg4cKFjBkz5qf3GTp0KCtXrgTg2Wef5fHHHwdg7NixLFy48Jqyifq3K/s0jyxIIiLIl3cmRl/1euHOzNvDnVn396VHcDOmf5DM1sOnzI5kqKqETx40WpqOnQWRN5idqH51uw1uewsOr4PPfwE2m9mJGizX/Ei//GnjE7Ijte4Bo1+65CZRUVGkpaVRVVWFu7s7M2bM4JVXXjlnm0GDBlFYeP70jX/+858MHz4cgMLCQl5++WVSUlLw8vKioKAAMD4o9OzZE4CdO3cSFxfHjz/+yGeffcbChQsZPHgwaWlphIWF/fS+zz//PM899xwnT55k27ZtfPHFFwB0796dLVu2XPOPQ9SfzLxiJs3dgn9jL96bHENTHyedylQLjb08mDOpP7fPWs+D85JY8mgcHVua2Adc6//1TR/1MvS627wsZup5J5zJhu/+CP7tYcTzZidqkFyzkJvEzc2Nbt26sXv3bg4ePEhoaCh9+/Y9Zxv7iPpS3N3dKSkp4amnnmLixIlER0dTWlpKeXk5zZo1o7i4mNOnT/OrX/0KgIqKCvz9/cnNzcXf3/+c9xo8eDBaa1555RVWr1790yl3d3d3vLy8KCwsxM/Pz0E/AeFoeWfLmDh3MxVVNhZNHWDKymVWEeDrzfwpAxg3K5GJczbz6WNxtGpq0s9j3auwbQEM/g3EPmpOBquIf9K4PyDxNWgeCtFTzE7U4LhmIb/MyLkuxcbGkpiYyMyZM1mxYsV5r1/JiLxx48bs2rWLZcuWMXXqVB566CEGDBhAVFQUAHv27KFfv34/FeUdO3bQvXt3GjVqRGnpudeqdu7cybFjxwgICDivYJeVleHj03ALg9WVV9p49P2tHC0o4YOHB9CxpXzgah/QmPcmx3D3Wxt4cN4WljwaV/+taPd9Bd+/AN3vgKG/r99jW5FSMPofxhrrXz0FTUMgcqTZqRoUuUbuYLGxsTz77LPcdtttBAcHn/f62rVrSUlJOe9hL+IABw8epEmTJowfP56bb76Z0tJSdu7cec5p9d69e/+0/Y4dO+jZsyfNmzenqqrqp2J+7Ngx7rvvPpYuXYqvr+85Hyzy8vIIDAzE07PhnaZ1Fs8v282WjHz+cWcv+oU6b8c2R+se3Ix/j+/DruwzPPPpTup1KeYTu+GTh6Ftb6PjmbLOqnKmcveAO+ZAq+7w8SQ4scfsRA2KFHIH69KlC97e3vzud7+75vd48cUX6dy5M3379iU9PZ3HHnvskoV8165ddO/eHYCRI0eybt06iouLGTduHP/617/o2rUrf/jDH3j++f9dv1q1ahU33eSic11dwAebMlm4KZNHhnTg1l5tzY5jOcOjWjFjRCSfbctm9rr0+jloUS58OB58msL4D8GzUf0c11l4+8K9Hxn/XXy/NIypR6peP806SHR0tE5KSjrnub1799K1a1eTEv3P9OnT6d+/PxMnTjTl+MnJybz66qssWLDgktuNGzeOl156icjIyEtuZ5Wfa0Oy9fApxr+9kYERgcyd1B93C60lbiU2m+YXC7eycs8J5k8ZQEKnwLo7WGU5zB8DR5ONtcSD+9XdsZzd4fUw7xboNBLuXghuMl50BKXUVq119IVek5+wgxw6dIguXbpQUlJiWhEH6Nu3L0OHDr1sQ5ixY8detoiL+nf8dCmPvp9MW/9G/Hd8Hynil+DmpvjXXb3p2NKX6R8mc+RUcd0d7PvnIXM93Pq6FPHLCY2DkS/C/q9h3b/MTtMgSCF3kIiICPbt28fs2bPNjsKUKVMu2xBmwoQJ9ZhIXImKKhvTPkimuKySdyZE06yx3L9wOb7eHrz9QDQ2m+aRBVspq7z4B9hrtu8r2PA6xEw1pluJyxvwCPS401jH/OB3ZqdxeVLIhbCI1747wNbD+fzt9p5EtpI71K9UWGATXrmrN3uOneFvX+9z7JvnHzaanbTpBSP/4tj3dmVKwS3/hlbdjKY5BRZtr+sipJALYQHrDuYyc/UhxvdvJze3XYPhUa2YHB/Ge+szHNfGtbIclkw2mr/c+R54eDvmfRsKrybGKnC2KuNO/ypZ26GuSCEXwmQ5hWX86qMUIoJ8+eMt3cyO47SeHt2Fbm2b8psl2zlaUFL7N/zuT5C91Zhm1qJD7d+vIWrRAW5+BY5shLVyvbyuuFQhd8Y78K1Mfp51z2bTPPXxds6UVPD6vX0aVA91R/P2cOf1e/tSUWnjl4tSqKyqRe/vA9/Axjcg5hGIGnP57cXF9bwLet4Na16CzI1mp3FJLlPIfXx8yMvLk+LjIFpr8vLypPNbHXtnbRo/HsjhDzdH0aV1U7PjOL3wwCb85bbubM44xX++P3htb1KUC0unG81NRv7ZsQEbqhv/afRi/+RhmV9eB1ymRWtISAhZWVnk5OSYHcVl+Pj4EBISYnYMl7X32Bn++e1+RnVrzX0D2psdx2Xc1ieEtQdzeX1VKkO7tKRP++ZXvrN9MZTSAnjgM7ku7ig+TeH22TB7JHz5K+Nr6YrnMC5TyD09PQkPDzc7hhBXpLzSxlMfbadZI0/+Oq4HSn6pOdSfbu3GxkN5PPXxdr5+YtCV92Pfvgj2LoPhz0Pr7nUbsqEJiYah/wc//BkiRxmn3IVDOOTUulJqlFJqv1IqVSn19AVef1UplVL9OKCUKqjxWlWN175wRB4hrO71Hw6y59gZXrytBy2aeJkdx+U09fHk73f0Ii2niH98s//Kdio4Ast/C+3jIO7xug3YUCX8CkJi4OvfQKGDZheI2hdypZQ78AYwGogC7lFKRdXcRmv9K611b611b+C/wKc1Xi6xv6a1vrW2eYSwuh1ZBbyx+hDj+gZzQ7fWZsdxWQmdAnkgNpQ5ielsTj916Y1tNmO+uLbBbbPATW46rBNu7jB2JlSWGqfY5Z4mh3DEiDwGSNVap2mty4FFwKVu87wH+NABxxXC6ZRWVPHUR9sJ8vWWqWb14OnRXWjXvDG//ng7RWWXmMe85R3IWAuj/gbNw+otX4MU2Amufxb2fwU7l5idxiU4opAHA0dqfJ9V/dx5lFKhQDjwQ42nfZRSSUqpjUqpsQ7II4RlvbryAAdPnuXlO3rSrJG0YK1rTbw9+OedvTiSX8zflu+98EYFmfDd8xAxDPo8UL8BG6rYxyCkPyyXU+yOUN/Tz8YDS7TWNRsih1av6HIv8JpSKuJCOyqlplYX/CS5M104o51Zp3lnbRr3xLRjSGSQ2XEajJjwFjwYH877GzPPP8WuNXw5w/j6ltfkTur64uYOY2ZCebGcYncARxTybKBdje9Dqp+7kPH87LS61jq7+r9pwGqgz4V21Fq/rbWO1lpHBwXJL0HhXCqrbDz96Q4Cfb15erQsC1vfZoyMJKR5I575dMe5C6vsXAKpK2HYH4x5zqL+BEX+7xT7rk/MTuPUHFHItwCdlFLhSikvjGJ93t3nSqkuQHNgQ43nmiulvKu/DgTigT0OyCSEpcxNzGD30TP86dZuckrdBI29PPjL2O4cyili1upDxpNFebDidxAcbaxsJurfwGnQtg+seAZKCi6/vbigWhdyrXUlMB34BtgLfKS13q2UekEpVfMu9PHAIn1u67WuQJJSajuwCnhJay2FXLiUI6eKeWXlAYZ3bcno7nKXulmu69ySW3u1ZeaqQ6SePAvfPAOlZ+DW/8pd6mZxc4ebX4PiXPj+BbPTOC3ljC1No6OjdVJSktkxhLgsrTWT5m4hKeMUK2cMoa1/I7MjNWg5hWUMf2UNd/nv5/f5z8KQ3xlNSoS5lj8Nm96Eh74zGseI8yiltlbfT3Yel+m1LoQVLdtxjDUHcnhqZGcp4hYQ5OfNszeEc1/efznTJAwGPWV2JAFw/e/Brw0s+6Usd3oNpJALUUfOlFbwwrI99AxpxsS4MLPjiGp3lH5KmNsJniq6n7xSs9MIALz9YPTLcGInbJpldhqnI4VciDry2sqD5BWV8eLYHri7ybQmS8jPQK17hcKIW1hV3u3K27eKutf1FqMH+6q/Gu1yxRWTQi5EHdh/vJB5GzK4J6Y9PUKamR1H2K14BpQ7fre+zOT4MBYnHSHliNwtbQlKwY3/ML7+5hlzszgZKeRCOJjWmj9+sQs/Hw9+M7Kz2XGE3f4VsP9ruO530CyYJ4Z1ItDXmz8u3YXN5nw3/bok//aQMMNYgS5ttdlpnIYUciEc7Msdx9iYdopfj+xMc1nZzBoqSoyVzYK6GO1BAT8fT/7vxi5szzrNkq1ZJgcUP4l7HPxDjTvZ5ca3KyKFXAgHKiqr5MWv9tKtbVPuiZFOYZaR+G8oOGycunX/X0Oesb2D6R/WnJdX7ON0cYWJAcVPPH3ghr9Czl5Imm12GqcghVwIB3p9VSrHz5TywphucoObVZzOhnWvQbfbIHzwOS8ppfjTrd3ILy7n1e8OmBRQnKfLTdDhOlj1IhTlmp3G8qSQC+Egh/OKeHdtGuP6BtMvtIXZcYTd988b64wPf/6CL3dr24z7Y0OZvyGD/ccL6zebuDClYNTLUHYWfviL2WksTwq5EA7y0vJ9eLq78fSoLmZHEXZZW2HHYqOnd/PQi242Y0Qkvt4e/PXriyx1Kupfyy4w4BHY+h4c2252GkuTQi6EA2xOP8XyXcd5dEgELZv6mB1HgLE05oqnoUlLGDTjkpv6N/biiWGdWHMgh9X7T9ZTQHFZQ34HjQOMaYNO2E68vkghF6KWbDbNX77aQ+umPjw8qIPZcYTdrk8gazMMe87oHHYZEwaGERbQmL9+vZfKKls9BBSX1cgfrnsaDifC/uVmp7EsKeRC1NIX24+yI+s0v7mhM428ZBUtS6gogZV/hNY9oPe9V7SLl4cbT4/uwoETZ1mcJJ3FLKPfJAjoBCufgyqZWXAhUsiFqIWS8ipeXrGP7sFNua1PsNlxhN2G1+FMFtzwt6taovSGbq2JCWvBK98eoLBUioYluHvCiBcg76BxvVycRwq5ELUwe10ax06X8uxNUbjJdDNrKMo1ppt1vgnCB13Vrkopnr25K3lF5cxafaiOAoqr1nk0hCbA6peMNeTFOaSQC3GNcgrLmLX6ECOjWhHbIcDsOMJuzd+NU+vD/3RNu/cM8ee2PsG8uy6drPxih0YT10gpGPlnKM6FxNfMTmM5UsiFuEb//eEgpZU2nh4t080s41QaJM2Bvg9AUOQ1v81vbjB65L+68qCjkonaCu4LPe6CDW/AaWmpW5MUciGuweG8Ij7YlMnd/dvRIcjX7DjC7oe/gJsHDHm6Vm/T1r8REweG8um2LGkSYyXD/mBMQ5MmMeeQQi7ENXhl5QE83BVPDutkdhRhd3SbMeVs4DRo2qbWb/fYdR3x9fKQNcutxL89DJgK2xfBiT1mp7EMKeRCXKXdR0+zNOUoU+LDaSXNX6xBa2O6WaMWEP+EQ96yeRMvHr0ugu/2niAp45RD3lM4QMIMoy+AjMp/IoVciKv09xX7adbIk0eGRJgdRdgd+gHS18CQ34JPM4e97eT4MIL8vHl5xT60dBazhsYtIO4J2P8VHNlidhpLkEIuxFXYcCiPNQdymDY0gmaNPC+/g6h7Nht89yfjtGv0FIe+dWMvD54c1oktGfn8sE9at1pG7C+gSVD1gjjyAUsKuRBXSGvNSyv20aaZDxMGhpkdR9jt/QKO74ChvwcPb4e//d392xEe2IS/r9hPlU2KhiV4+8Lg30DGWuNsTAMnhVyIK/TtnhNsP1LAr4ZH4uMprVgtwVYFq/4KgZ2hx511cghPdzeeGhnJ/hOFLE3JrpNjiGvQbxI0a2+Mym0Nuze+FHIhroDNpnnl2wN0CGzCuL7SitUydn4Mufth6P9dVSvWq3Vj9zZ0bdOUf39/kApZUMUaPLyN/+/HtsPepWanMZUUciGuwFc7j7H/RCFPDu+Eh7v8s7GEqgpY/Tdo3RO63lqnh3JzUzw1IpLDecV8mizNSCyj510Q1BV+eBGqKs1OYxr5jSTEZVTZNK99d4DIVr7c0rOt2XGE3bb3IT8Drv8DuNX9r7JhXVvSq50///k+lfJKGZVbgpu7MSrPOwi7lpidxjRSyIW4jKUp2RzKKeJXwyNlYRSrqCiFH/8BITHQaUS9HFIpxYwRkWQXlMgyp1bS5WZjudrVLzXYUblDCrlSapRSar9SKlUpdV5vRKXUJKVUjlIqpfrxUI3XJiqlDlY/JjoijxCOUlFl47XvDhLVpik3dGttdhxhlzQHzmQbLTtV/X24GtwpkOjQ5rz+w0FKK6rq7bjiEtzc4Lr/g/x02LHI7DSmqHUhV0q5A28Ao4Eo4B6lVNQFNl2ste5d/Xi3et8WwB+BAUAM8EelVPPaZhLCUT7ZmkXmqWKeGimjcd9jZCYAACAASURBVMsoL4Z1r0D4YONRj5RSPDWyMyfOlLFwU2a9HltcQufR0KY3rHnZuHeigXHEiDwGSNVap2mty4FFwJgr3PcGYKXW+pTWOh9YCYxyQCYhaq2ssor//pBK73b+XN+lpdlxhF3SHCjKMUZhJhgYEUBcRACzVqdSXN4wT+VajlJGH4GCTEhZaHaaeueIQh4M1LxglFX93M/drpTaoZRaopRqd5X7ClHvPkrKIrughBkjIlH1ePpWXEJ5sbEedYfrIHSgaTGeGhlJ7tly5m84bFoG8TOdRkBwNPz4T6gsMztNvaqvm92WAWFa654Yo+55V/sGSqmpSqkkpVRSTk6OwwMKUVNZZRWzVqXSL7Q5gzoFmh1H2NlH47VcprS2+oW2YFCnQN75MU1G5VahlHEH++kjsG2B2WnqlSMKeTbQrsb3IdXP/URrnae1tn9Eehfod6X71niPt7XW0Vrr6KCgIAfEFuLilmzN4ujpUp4Y1klG41ZRXgyJ/4bwIaaOxu2eHNaJvKJyPpBr5dYRcT20i4Uf/9WgRuWOKORbgE5KqXCllBcwHvii5gZKqZqLA98K7K3++htgpFKqefVNbiOrnxPCNOWVNmauOkTvdv4MltG4dWydC0Un4TpzR+N20WEtiO8YwJtr0igplzvYLUEpuO53UHjU6DPQQNS6kGutK4HpGAV4L/CR1nq3UuoFpZS93dITSqndSqntwBPApOp9TwF/xvgwsAV4ofo5IUzzabJxbfzJ4TIat4zyYlj3mnGXemic2Wl+8uSwSHLPlvHhZhmVW0aHoRDSH9a9CpXlZqepFw65Rq61/lprHam1jtBav1j93HNa6y+qv35Ga91Na91Laz1Ua72vxr5ztNYdqx9zHZFHiGtVUWXj9VWp9AxpxnWRcgnHMra+Z4zGTb42/nMx4S2I7dCCN9ccknnlVqEUDP6tca28gcwrl85uQtTw2bZssvJLeFKujVtHRYlxp3r4YAiLNzvNeZ4cFsnJwjIWb5Fub5bRaYQxr3ztvxpEtzcp5EJUq6yy8caqVLoHN5V541ay7X04e8IYZVlQbIcWxIS1YNbqQ5RVyqjcEpSCIb81evE3gB7sUsiFqLY05SiH84p54noZjVtGZblxbbxdLIQlmJ3mgpRSPDm8E8fPlPKRjMqto/ON0KqH0ZPf5tofsKSQC4Gxwtkbq1Pp0tqPEVGtzI4j7HYshjNZMPjX9dpT/WrFRQTQt70/b65Jk/XKrUIpGPIbyEuF3Z+ZnaZOSSEXAvhm93HScoqYNrSjjMatoqrS6Knephd0HG52mktSSjH9+o5kF5SwNOWo2XGEXZdbjPXKf/wH2Fz3A5YUctHgaa15Y1Uq4YFNuLFHm8vvIOrHns/hVBoMsvZo3G5o55Z0bdOUmatTqbJps+MIMFZGG/xryNkH+782O02dkUIuGrzVB3LYffQMvxgSgbuscGYNNpvRMzuoi7HetBNQSjFtaARpOUV8s/u42XGEXdRYaB5u3MGuXfMDlhRy0eDNXJVK22Y+jO0j6/VYxv6vIWcvDHrKGFU5idHd29AhsAlvrEpFu2jRcDruHhD/JBxNhvQ1ZqepE87zL0SIOrApLY8tGflMHdwBLw/552AJWhvXNJuHQ7dxZqe5Ku5uikevi2D30TOs3i+LO1lG73vBt7UxKndB8ptLNGivr0ol0NeL8THtzY4i7NJWwbEUSPiVMZpyMmN7B9O2mQ+vy6jcOjy8Ie5xSP8RjmwxO43DSSEXDdaOrALWHszlwYQO+Hi6mx1H2K17FfzaQK/xZie5Jl4ebjwyJIKth/PZlC5LR1hGv0nQqLkxE8LFSCEXDdas1Yfw8/Hg/lgZjVtG1lZj1DRwmjGKclJ3929HoK8Xb6xKNTuKsPP2hQGPGvdfnNhjdhqHkkIuGqRDOWdZsfs4EweG4efjaXYcYZf4Kvg0M0ZPTszH053J8eGsPZjLruzTZscRdjFTwbOJcdbHhUghFw3SOz+m4eXuxqT4MLOjCLucA7D3S+OXrbef2Wlq7f7YUHy9PXjrxzSzowi7xi0gerLRf/1UutlpHEYKuWhwTpwp5dPkbO6MDiHQ13lP37qcxH+Dh49x+tMFNGvkyX0D2vPVjqMczisyO46wGzgNlDtseN3sJA4jhVw0OHPWpVNpszF1UITZUYTd6Syjr3rfCdAk0Ow0DjMlIRwPNzfeWSujcsto2hZ63W2sqleUa3Yah5BCLhqU0yUVLNyUyU0929I+oLHZcYTdhpmgbRA33ewkDtWqqQ/j+gbzUVIWOYVlZscRdnFPQmUpbHrL7CQOIYVcNCjvbzzM2bJKHhncwewowq74FGx9D3rcCf6uN4Ng6uAOVFTZeG+961yTdXpBkdD5Jtj8NpSdNTtNrUkhFw1GaUUVcxMzGBwZRPfgZmbHEXZbZkNFkdFG0wV1CPJlVLfWLNhwmMLSCrPjCLuEX0JpASTPNztJrUkhFw3Gkq1Z5J4t49EhMhq3jIoS2PQmdBoJraLMTlNnHh0SwZnSSj7cnGl2FGHXLgbax8GGN6DKuT9gSSEXDUKVTfPO2jR6hTRjYIcAs+MIu+0fQnGuy47G7Xq182dghwDmrMugvNJ118V2Ogm/hDNZsOsTs5PUihRy0SCs3HOcw3nFTB0cgXKCta0bBFsVrH8d2vaF0Hiz09S5qUM6cPxMKcu2HzU7irDrOAKCuhpTH524L74UcuHytNa89WMa7Vs0ZlT31mbHEXb7voJThyD+CWgAH66uiwyicys/3lmbJoupWIWbm3E26OQeOLjS7DTXTAq5cHlJh/PZllnAQ4PCcXdz/YLhFLQ2RkHNw6DrrWanqRdKKR4e3IF9xwtZc0CWOLWM7reDX1vY8F+zk1wzKeTC5b21Jo3mjT25s187s6MIu8wNkJ0EA6eDW8NZee7WXm1p1dSbt6Vtq3V4eEHsL4zFeo6mmJ3mmkghFy4t9eRZvtt7ggdiQ2nk1XAKhuUl/gcaB0Dv+8xOUq+8PNyYHB/O+kN5spiKlfSbCF5+sN45R+VSyIVLm70uDW8PNybEhZkdRdjl7IcDy43FUbwaXne9ewe0x9fbQ0blVuLTzCjmuz+DAuebIiiFXLisnMIyPknO5vZ+sjiKpWx43Vgcpf/DZicxRVMfT+6JacdXO4+RlV9sdhxhF/sL46bLjW+aneSqOaSQK6VGKaX2K6VSlVJPX+D1GUqpPUqpHUqp75VSoTVeq1JKpVQ/vnBEHiEA5q3PoKLKxsODpAGMZZw9CdsXQ+97oUnDnc8/OT4cBcxeJ21bLaNZiHHjW/I8KCkwO81VqXUhV0q5A28Ao4Eo4B6l1M9bNG0DorXWPYElwN9rvFaite5d/WgYt6+KOldcXsn7mw4zomsrwgObmB1H2G1+B6rKIXaa2UlM1da/Ebf2asviLUc4XeLcXcVcysDpUH4Wts41O8lVccSIPAZI1Vqnaa3LgUXAmJobaK1Xaa3t55A2AiEOOK4QF/XJ1iwKiiuYKoujWEd5MWx5FzqPhsCOZqcx3YODwikur5K2rVbSpid0uM44vV5ZbnaaK+aIQh4MHKnxfVb1cxfzILC8xvc+SqkkpdRGpdRYB+QRDVyVTTN7XTq92vnTL7S52XGE3fYPoeSUMeoRdGvbjLiIAN5LlLatlhL3BJw9DruWmJ3kitXrzW5KqfuBaOAfNZ4O1VpHA/cCrymlIi6y79Tqgp+UkyPNFMTFfbf3BBl5xTw8KFzasVqFzWYsTtG2L4TGmZ3GMh4eZLRt/WqntG21jIjroWWU8ffVSTrwOaKQZwM1O22EVD93DqXUcOD3wK1a6zL781rr7Or/pgGrgT4XOojW+m2tdbTWOjooKMgBsYWrendtGsH+jRjVTdqxWsaB5UY71rjpDaId65UaEhlEx5a+vPNjurRttQqlYOA0OLEL0teYneaKOKKQbwE6KaXClVJewHjgnLvPlVJ9gLcwivjJGs83V0p5V38dCMQDexyQSTRQKUcK2JKRz5SEcDzcZXalZax/HZq1h65jLr9tA+LmpngoIZw9x86w4VCe2XGEXY87oUlLY1TuBGr9m05rXQlMB74B9gIfaa13K6VeUErZ70L/B+ALfPyzaWZdgSSl1HZgFfCS1loKubhm765Nw8/bg7v7SztWy8jeCpnrIfZRcPcwO43ljO0TTEATL96VqWjW4eENMQ/DwW+NBkYW55B/VVrrr4Gvf/bcczW+Hn6R/dYDPRyRQYis/GKW7zrOgwnh+HpLwbCMDW+Ad1Po84DZSSzJx9OdBwaG8tp3B0k9WUjHln5mRxIA0VNg7b+Mv7+3/sfsNJck5x6Fy5ibmIECJkk7Vus4nQW7P4e+E8CnqdlpLOuB2FC8PdykQYyVNAmEXvfA9kVQlGt2mkuSQi5cQmFpBYu3HOGmnm1o69/I7DjCbtNbgIYBj5idxNICfL0Z1zeET5KzyTtbdvkdRP2IfQyqymDLbLOTXJIUcuESFm85wtmySh5MCDc7irArOwtb50HUGPBvb3Yay3swIYzyShsLN0mDGMsIioRON8CWd6Ci1Ow0FyWFXDi9yiobcxMziAlrQc8Qf7PjCLuUhVB2WhrAXKGOLf24rnMQ8zccpqyyyuw4wm7gNCjKgZ0fmZ3koqSQC6f37Z4TZBeUMEVG49Zhq4KNMyEkBkKizU7jNB5MCCf3bBlfpEiDGMsIHwytusOGmZZtECOFXDi92evSad+iMSOiWpkdRdjt/xryM4zRjLhiCR0D6dzKj9nrpEGMZdgbxOTshbRVZqe5ICnkwqlty8xn6+F8JsWF4e4mHcMsY8NMowFMl5vNTuJUlFJMSQhj3/FCaRBjJd1vr24QM9PsJBckhVw4tdnr0vHz9uAuaQBjHdnJ0gCmFsb0NhrEyFQ0C7E3iEldackGMVLIhdPKLihh+a7jjI9pJw1grGTjTPDykwYw18jH0537Y0P5ft9J0nLOmh1H2EVPAXdv2DjL7CTnkUIunNb89RlorZkoDWCs48xR2P0Z9H1AGsDUwv2xoXi5uzE3McPsKMKuSSD0uttoEFN8yuw055BCLpxSUVklH2zOZHT3NoQ0b2x2HGG3+R3QNmkAU0tBft6M6d2WJVuzKCguNzuOsIt9DCpLIGmO2UnOIYVcOKVPkrMoLK2UKWdWUl4MW+dC5xuheZjZaZzelIRwSiqqWLTliNlRhF3LrsZ65ZvfgUrrfMCSQi6cjs2mmZuYQa92/vRtLw1gLGPHIijJlylnDtK1TVPiIgKYtz6Diiqb2XGEXew0OHvcuIRkEVLIhdNZtf8k6blFPJgQjlIy5cwSbDbjJqA2vaD9QLPTuIwHE8I5drqUFbuOmx1F2HUcBoGdYeMblmkQI4VcOJ05iem0burD6O6tzY4i7NJ+gNwDxmhFPlw5zNDOLQkLaMycRJmKZhlKGVMrj22HzI1mpwGkkAsns+/4GRJT85gQF4qnu/z1tYwNM8G3NXS7zewkLsXNTTE5PpxtmQUkZ+abHUfY9RwPPv7GVEsLkN+EwqnMXZeBj6cb9/SX1bQs4+Q+OPQ9xDwEHl5mp3E5d/QLwc/HgznSIMY6vBpD9GTY9yXkHzY7jRRy4TzyzpbxWUo24/qG0LyJFAzL2PQmePhAvylmJ3FJTbw9GN+/Hct3HedoQYnZcYRd/4dBucHmt81OIoVcOI8PNmVSXmljSnyY2VGEXfEpo0FGz7ugSYDZaVzWxLgwtNbM32D+6E9UaxYMUWMheQGUFZoaRQq5cArllTbmbzzMkMggOrb0MzuOsNv6ntEgY8AvzE7i0kKaN2ZU99Z8uDmT4vJKs+MIu9jHoOw0pHxoagwp5MIpfLXzKDmFZUyW0bh1VFUYjTE6XAetosxO4/KmxIdzuqSCT5OzzY4i7EL6QUgMbJplTME0iRRyYXlaa2avS6djS1+GRAaZHUfY7f0CCo8aoxJR5/qFNqdnSDPmJqZjs1lj/rIAYn8Bp9Lg4DemRZBCLiwv6XA+u7LPMDk+TBrAWMnGWdAiAjqOMDtJg6CUYnJ8GIdyivjxYI7ZcYRd11uhaYipU9GkkAvLm7MunWaNPBnXJ8TsKMLuyBbI2gIDHgU3+TVSX27q0ZYgP29ZFc1K3D2MqZfpP8KJ3aZEkH+BwtKy8ov5Zvdx7olpTyMvd7PjCLtNs8C7GfS+1+wkDYqXhxsTYkNZcyCH1JPm3iktaug7ETwambZWuRRyYWnzNxxGKcWEgaFmRxF2p7Nh9+fGmuPevmanaXDuHdAeLw9Zq9xSGreAXuNhx0dQlFvvh5dCLiyrqKySDzdnMrp7a9r6NzI7jrDb8i6gIWaq2UkapABfb8b2bsunydmyVrmVDHgUqsqMpXzrmRRyYVn2Nccnx8ua45ZxzprjcpbELJPjZa1yy2nZpXqt8nfrfa1yhxRypdQopdR+pVSqUurpC7zurZRaXP36JqVUWI3Xnql+fr9S6gZH5BHOz2bTvCdrjlvPjsXGmuMy5cxUXds0ZWCHAOavz6BS1iq3jtjHjLXK9yyt18PWupArpdyBN4DRQBRwj1Lq590hHgTytdYdgVeBl6v3jQLGA92AUcDM6vcTDdyaAzmk5RYxRaacWYfWRl/11j0hNM7sNA3elIRwjp4uZcVuWavcMiKGQUBHYypaPa5V7ogReQyQqrVO01qXA4uAMT/bZgwwr/rrJcAwZfx2HgMs0lqXaa3TgdTq96s/WsOZY/V6SHF5cxLTadXUmxt7tDE7irBLWwU5+4wGGPLhynTXd2lJ+xaN5aY3K3FzM66VH002pmfW12Ed8B7BQM0LNVnVz11wG611JXAaCLjCfevWkikw/1ZT2+uJcx04Ucjag7lMGBgma45bycY3oUkQdL/d7CQCcHdTTIoLY+vhfLYfKTA7jrDrdY8xNbMeG8Q4zW9JpdRUpVSSUiopJ8eBXY0iR0HuAUj7wXHvKWplbmIG3h5u3BMja45bRm6q0YIy+kHw8DY7jah2Z3QIvt4ezE2Utcotw9sXbngR+jxQb4d0RCHPBtrV+D6k+rkLbqOU8gCaAXlXuC8AWuu3tdbRWuvooCAH9tvudhv4tjJtIr84V35ROZ9ty+K2PsG0kDXHrWPzW+DuBdGy5riV+Pl4cmd0CF/tPMaJM6VmxxF2fR+AjsPq7XCOKORbgE5KqXCllBfGzWtf/GybL4CJ1V/fAfygtdbVz4+vvqs9HOgEbHZApivn4QX9H4LU7yDnQL0eWpzvwy2ZlFbYmCSrnFlHSQFsW2icUvdrZXYa8TOT4sKotGne3yhrlTdUtS7k1de8pwPfAHuBj7TWu5VSLyilbq3ebDYQoJRKBWYAT1fvuxv4CNgDrACmaa2rapvpqvWbbIw2Nr1Z74cW/1NRZWPBhsPEdwygS+umZscRdtveh4oi4yYeYTmhAU0Y1qUVCzdlUlpR/78+hfkcco1ca/211jpSax2htX6x+rnntNZfVH9dqrW+U2vdUWsdo7VOq7Hvi9X7ddZaL3dEnqvmGwQ97oLtHxpzZIUpVuw6zrHTpUyOkwYwllFVaZxWbx8HbXubnUZcxJSEME4VlfNFylGzowgTOM3NbnUu9lGoKIbk+WYnabDmJqYTGtCY67u0NDuKsNv/NRRkGlPOhGUN7BBAl9Z+zElMR9fj/GVhDVLI7Vr3gLBBsOltYxQi6lXKkQKSMwuYFBeGm5vMUbaMTW+Cf3vocpPZScQlKKWYEh/OvuOFbDiUZ3YcUc+kkNcU+ws4kwX7vjQ7SYMzNzEdP28P7ugna45bxtEUOJwIMY+AmzRctLpbe7cloIkXc6RBTIMjhbymyFHgHypT0erZ8dOlfLXjGHf1b4efj6fZcYTdpjfBy9eYSiMsz8fTnfsGtOf7fSfIyC0yO46oR1LIa3JzN+7MPbIRspPNTtNgLNiYgU1rJsWFmR1F2BWegJ1LoPe94NPM7DTiCt0fG4qHm+K99RlmRxH1SAr5z/W5H7z8ZCpaPSkpr+KDTZmMiGpFuxaNzY4j7JJmg61Cppw5mZZNfbi5Z1s+TjrCmdIKs+OIeiKF/Od8mhrFfNensphKPfg8JZv84gqmyJrj1lFRCltmG5eaAiLMTiOu0pT4cIrKq/hI1ipvMKSQX8iAqWCrNEYlos5orZmbmE63tk2JCW9hdhxht+sTKM6VKWdOqkdIM/qHNee99RlU2WQqWkMghfxCWnSAzjdC0hyoKDE7jctKTM3jwImzTIkPlzXHrUJr42bPllEQPsTsNOIaTYkPJyu/hO/2njA7iqgHUsgvZuBjUJwHOz82O4nLmpOYTqCvNzf3kjXHLSNjLZzYaVwblw9XTmtEVCuC/RsxZ52sitYQSCG/mNB4o0nMxlnGKEU4VFrOWX7Yd5IHYkPx9pA5ypaxcRY0DoCed5mdRNSCh7sbk+LC2JR+il3Zp82OI+qYFPKLUQpiH4OTeyB9jdlpXM7cxAy83N24d4CsOW4ZeYdg/3JjqVLPRmanEbV0V/92NPZyZ46sVe7ypJBfSvfboUmQNIhxsNPFFSzZmsWY3m0J8vM2O46w2/QWuHkYy/oKp9eskSd39gth2fajnCyUtcpdmRTyS/HwNn6pHVgBualmp3EZH27JpKSiiikJMuXMMkoKjOVKu98Ofq3NTiMcZFJ8uLFW+QZZq9yVSSG/nOgp1WuVy6jcESqqbMxbn0FcRABd28ia45axbYGx5rhMOXMp4YFNGNalJe/LWuUuTQr55fi2NNYqT/kAik+ZncbpLa9ec/xBGY1bR1WlsepfaLysOe6CpiSEc6qonM+3ZZsdRdQRKeRXYuBj1WuVzzM7idObsy6d8MAmDO0sa45bxr4v4bSsOe6qBnYwzn7JWuWuSwr5lWjVzWiOseltqJL+xddq6+F8Uo4UMDle1hy3lI2zjFX/Ot9odhJRB5RSPJgQzoETZ1mXmmt2HFEHpJBfqYHToPAo7FlqdhKnNWddOk19PLi9r6w5bhlZW43V/gY8KmuOu7BberUh0Neb2dIgxiVJIb9SHUdAQEfY8IY0iLkGWfnFLN91jHti2tPE28PsOMJu4xvgXb1QkHBZ3h7uPBAbyur9OaSePGt2HOFgUsivlJubMWo5mgxHNpmdxunM33AYpRQTZM1x6yg4Ars/h74TjFX/hEu7L7Y9Xh5u0iDGBUkhvxq97wUff2NULq7Y2bJKPtyUyY092hDsLx3DLGPz24CGAY+YnUTUg0Bfb8b1CebT5CxOFZWbHUc4kBTyq+HVBPpNMu7yzc8wO43T+GjLEQrLKmXKmZWUnYWt8yBqDPhLm9yGYkpCOKUVNj7YJA1iXIkU8qsVMxWUm9HOUlxWlU0zJzGd/mHN6d3O3+w4wi5lIZSdhthpZicR9SiylR9DIoOYt+EwZZXSIMZVSCG/Ws2Cods4SJ4PpbKq0OV8u/s4WfklPJjQwewows5WBRtnQkgMtOtvdhpRzx4aFE5OYRnLth8zO4pwECnk12LgNCivPjUpLunddem0b9GYEVGtzI4i7PYvNy4NDZTReEOU0DGQzq38eHdtmjSIcRFSyK9F294QNsg4vS4NYi4qOTOfrYfzmRIfhrs0gLGODW9As/bQ5WazkwgTKKV4cFA4+44Xsv5QntlxhANIIb9WA6fDmSxpEHMJs9el4+fjwZ3R7cyOIuyyt0LmeuNOdXeZz99QjendlkBfb95dm2Z2FOEAtSrkSqkWSqmVSqmD1f9tfoFteiulNiildiuldiil7q7x2ntKqXSlVEr1w3lWbOg0srpBzOvSIOYCjpwqZvnOY9w7QBrAWMr6140GMH0nmJ1EmMjbw50JA0NZtT+H1JOFZscRtVTbEfnTwPda607A99Xf/1wxMEFr3Q0YBbymlKp5+/JvtNa9qx8ptcxTf9zcIPYxOLoNMjeYncZy5q3PQCnFxIFhZkcRdgWZxhmkfhOlAYzgvgHt8fZwk7atLqC2hXwMYL/jax4w9ucbaK0PaK0PVn99FDgJBNXyuNbQ6x5o1EIaxPzMmdIKFm05ws0929BWGsBYx8Y3QSmjQ6Fo8AJ8vRnXN4RPkrPJPVtmdhxRC7Ut5K201vY5DMeBS96arJSKAbyAQzWefrH6lPurSinvWuapX16Nof+DsO8ryDt0+e0biEWbMzlbVsnDg2TKmWWUFBjL8Ha7DZrJojXC8NCgcMorbSzYIA1inNllC7lS6jul1K4LPMbU3E4b8xguerFYKdUGWABM1lrbqp9+BugC9AdaAL+7xP5TlVJJSqmknJycy//J6kv/h8HdU0bl1corbcxZl0FcRADdg5uZHUfYJc8zpkwOnG52EmEhEUG+DO/aigUbD1NSLg1inNVlC7nWerjWuvsFHkuBE9UF2l6oT17oPZRSTYGvgN9rrTfWeO9j2lAGzAViLpHjba11tNY6OijIQmfm/VpBz7uNTllFstbvVzuPcvxMKQ8PltG4ZVRVGFMlwwYZUyeFqGHq4A6cKirnk+Qss6OIa1TbU+tfABOrv54InDcXSynlBXwGzNdaL/nZa/YPAQrj+vquWuYxR9zjUFkKW2abncRUWmve/jGdTi19uS7SQh+2Grrdn8GZbOPvqRA/0z+sOb1CmjF7XTo2m8zAcUa1LeQvASOUUgeB4dXfo5SKVkq9W73NXcBgYNIFppktVErtBHYCgcBfapnHHEGdIXKUsZpURYnZaUyz/lAee4+d4eFBHTA+mwnTaQ3r/wuBkdBxhNlphAUppXh4cAfSc4v4bu8Js+OIa1CrCb5a6zxg2AWeTwIeqv76feD9i+x/fW2Obylxj8N7N8H2DyF6itlpTPH2j2kE+nozpk9bs6MIu/Qf4fgOuOXfxpRJIS5gVLfWhDRvxDtr0xjZrbXZccRVkn/ZjhIaD237GA03bLbLb+9i9h8vZM2BHCbHh+Ht4W52HGGX+G9o0hJ6jjc7ibAwD3c3HkwIZ0tGPsmZ+WbHEVdJWi8y4QAAIABJREFUCrmjKAVxT8CpQ3Bgudlp6t07a9No5OnOfQNkbWvLOL4LDn1vtGP19DE7jbC4u6Lb0dTHg3d+lLatzkYKuSN1vRX820Pif8xOUq+OnS5haUo2d0WH4N/Yy+w4wm79f8GzidHrQIjLaOLtwf2xoazYfZyM3CKz44irIIXckdw9IHYaHNkIRzabnabezE3MwKbhIWkAYx2ns2DXEqMda6PzlkAQ4oImxYfh6ebGO7KYilORQu5ofe4HH3/j2mQDcLqkgg82ZXJTjza0a9HY7DjCbuMs44712F+YnUQ4kZZ+PtzeL5iPt2aRUyhtW52FFHJH8/aFmIeNtq05B8xOU+c+2GS0Y50qDWCso6QAtr4H3ccZl3qEuAoPDepARZWN+RsyzI4irpAU8roQ8wh4eMN6175WXlZZxZzEdAZ1CpR2rFaSNMdoxxr3hNlJhBOKCPJlZFQr5m84TFFZpdlxxBWQQl4XfIOMU+w7FsOZY5ff3kl9vi2bnMIyHhkcYXYUYVdZBpvehA5DoU1Ps9MIJ/XIkAhOl1SweMsRs6OIKyCFvK4MnA62Stg0y+wkdcJm07z1Yxrd2jYlvmOA2XGE3Y7FcPYExMtoXFy7vu2bExPWgtnr0qmoanh9MZyNFPK60iIcosZC0lwoPW12Gof7bu8J0nKKeGRIhLRjtQpblXGTZZtexohciFp4ZEgHsgtK+GqH655VdBVSyOtS/JNQdsa4ZulCtNa8ueYQIc0bcWN3aedoGfu+hLxUSJhhNCgSohaGdm5Jp5a+vLnmEMYq1cKqpJDXpba9ocN1xlSgilKz0zjMpvRTJGcW8MjgDni4y18hS9Aa1r4CLSKg6y1mpxEuwM1N8eiQCPYdL2TV/guuUC0sQn4L17X4XxrXLHcsMjuJw8xcfYhAXy/ujG5ndhRhl7YajqUYZ4HcpNe9cIxbe7cl+P/bu+/wqKr8j+PvbzohhRZKEkqAAEGqRIqAiATFguAKa8MfiuJiWRR7W110raxrWcuCDVDAhmJDAZHee0dCS6ghkEBIb+f3x534sC49yZyZzPf1PPNkyp25n7livjnnnntOjWq8O2eH7SjqNLSQV7aml0KDDs65y9IS22nKbeO+Y8zfls7t3eMICdSC4TEWvg5h9aG9Lo6iKk6gvx/De8axMiWT5bsybMdRp6CFvLKJQM+HIGMnbJ5mO025vTd3B+HBAdzarbHtKKrMvlWwax50u9eZv0CpCnTDRY2oXT2Id+dutx1FnYIWcndodQ3UaeGcw/TiQSM707OZvvEAQ7o1JiIk0HYcVWbhGxASCZ1us51EVUHVgvy5vXsT5v6Wzqb9Ve8KnKpAC7k7+PlBj1GQthGSZ9pOc97GzttJkL8fw7rH2Y6iyhxOhi3fw0XDISTCdhpVRd3arQlhwQG8N1fPlXsiLeTu0nYwRDaEBa95Zav84LF8vl6zlz8nNiQqXLtvPcbC1yEgBLqMsJ1EVWGR1QK5pWsjpm84oEuceiAt5O7iH+jMfb1nGaQstp3mnH2wYCelBl0cxZNkpsC6z5wu9bAo22lUFXdHjzgC/P0YO1+XOPU0Wsjd6cJboXqU0yr3Ihk5hUxensq17aN1qVJPsuhNED+4+K+2kygfUDc8hMGdYpm6ai8Hj1WdeTGqAi3k7hRYDbreAztmw/41ttOctQ8X7iSvqIR7e+viKB4j6wCs+QQ63gKRMbbTKB8xolczSl0zOyrPoYXc3S66A4IjvaZVfiy3iAmLU7iqTQOa1w23HUeVWfK2My9B9wdsJ1E+pGGtUK7rGMOU5amkHy+wHUe5aCF3t5BI6PIXZ6Rx2mbbac5o/OLdZBcUc2/v5rajqDI5R5z5+9sOdhbnUcqN7undnKKSUj5YoOfKPYUWchu63g1BYTB/jO0kp5VdUMxHi3aRlFCP1tF6aZPHWPouFOVBzwdtJ1E+KK5Odfq3j+aTpSlk5hTajqPQQm5HaC3oPBw2fQPpv9lOc0qfLEnhWF4Rf71MW+MeI+8oLB8Hra+FqJa20ygfdW/v5uQWlvDRol22oyi0kNvT7T5n8JuHnivPKyzhgwU7uaRFFO0b1rAdR5VZ/r6zNG7Ph2wnUT6sRb1w+l1Qn/GLdnMsr8h2HJ+nhdyW6nUgcRhs+BKOeN4I0MnLUzmSU8hIbY17jvwsZ5Bby6ugQXvbaZSPu++y5hwvKGbi4t22o/g8LeQ2XTwS/IOcOdg9SH5RCePm76Br01okNqllO44qs3ws5B+FXo/aTqIUbWIiuaxVXT5ctIvsgmLbcXxauQq5iNQSkVkikuz6WfMU25WIyFrX7bsTno8TkWUisl1EPheRoPLk8Trh9ZxZudZNgczdttP8bsryVNKyChjZJ952FFUmPwsWvw0troTojrbTKAXAyD7xHM0tYoK2yq0qb4v8cWC2MSYemO16fDJ5xpgOrtu1Jzz/CvC6MaY5kAncUc483qf7/eDn7zHnyvOLSnh37g66xNXi4mZ1bMdRZcpa45c+ZjuJUr/r0LAGvVtGMW7+To7n67lyW8pbyAcAE1z3JwADz/aNIiLAZcBX5/P+KiMiGi4cCmsnQ4b9EaCTlzkTPTyQ1MJ2FFUmPwuWvAMt+mlrXHmcB5JacCxPW+U2lbeQ1zPGHHDdPwjUO8V2ISKyUkSWikhZsa4NHDXGlJ1c2Qv45lyTPR8E8Yf5/7QaI7+ohPfmOefGuzWrbTWLOsHycZCXCb20Na48T/uGNejTqi7vL9hFlrbKrThjIReRX0Rk40luA07czhhjgFOtz9nYGJMI3Ay8ISLnPGm3iNzl+mNgZXp6+rm+3bNFRDsj2NdNsTqC/dOlKaQfL2CUtsY9R9lI9fgrIOZC22mUOqmyVvn4RbttR/FJZyzkxpgkY0ybk9y+BdJEpAGA6+ehU3zGPtfPncBcoCNwBKghIgGuzWKBfafJMc4Yk2iMSYyKqoJLNvYY5Yxgn/eqld3nFZbwn3k7ubhZbbo01da4xyhrjeu5ceXB2sZGkpRQlw8W7NTryi0ob9f6d8BQ1/2hwLd/3EBEaopIsOt+HaA7sNnVgp8DDDrd+31GeD1nQZUNX8DhZLfv/tOlKRzO1nPjHiXvKCx+y9Ua72Q7jVKn9UBSC7Lyi/lYZ3tzu/IW8peBviKSDCS5HiMiiSLygWubBGCliKzDKdwvG2PKVgt5DHhQRLbjnDP/sJx5vFv3ByAgBOa94tbd5hYWM3b+Dro3r03nOL1u3GMseRvyj8FlT9tOotQZtYmJpG/reny4cBfHcrVV7k7lKuTGmCPGmD7GmHhXF3yG6/mVxpg7XfcXG2PaGmPau35+eML7dxpjOhtjmhtjBhtjfHtdvLAo6HwXbPgKDm11224/XrSbw9mFPNhXW+MeI+cwLH0PWg+EBu1sp1HqrIxKasHx/GLGLfC82SqrMp3ZzdN0vx+CqsPcF92yu2O5RYydt4M+rerSqbG2xj3GwtehKBd6P2k7iVJnrXV0BP3bR/PRwt26XrkbaSH3NKG1oOs9sPlb2L+20nc3bsEOsvKLeehyXUnLY2QdgBUfQLsbdIUz5XVGJcVTWFLKO3O2247iM7SQe6KL74NqNWH2c5W6m/TjBXy0cDf920freuOeZME/obRYrxtXXqlpVBiDO8UyeVkqezNzbcfxCVrIPVFIpLNM5Y7ZsGtBpe3mnTnbKSwpZVSSzqnuMTJTYNUE6Hgr1IqznUap81K2TsNbs91/BY4v0kLuqS66E8KjYfZoMKeaZ+f87Tuax+RlqQzuFEvTqLAK/3x1nua9AuIHlzxiO4lS5y26RjWGdG3M1NX72JGebTtOlaeF3FMFVnMmAdm7An77qcI//q1fnL+UdYUzD5K22Zndr/NwiPTN2YpV1XFP72YEB/jx+qxttqNUeVrIPVmHIVC7Ofz6PJSWVNjHbj+UzVer9zKka2Oia1SrsM9V5TR7NASFO6dVlPJydcKCuaNHHD+sP8DGfcdsx6nStJB7Mv8A6P0UHNoMG76ssI999eetVAv0557e5zzlvaosuxfBtp+h5yjnygWlqoDhlzSlZmggL/20BVMJpwiVQwu5p2s9EBq0hzkvQHH5r8tcsTuDmZvTGNGrKXXCgisgoCo3Y2DWM86YiC4jbKdRqsJEhATy18viWbT9CPOTD9uOU2VpIfd0fn7Q9zk4muosoFEOxhhenL6FehHB3NGjaQUFVOW25TvYtxJ6P+GMjVCqChnStTGNaoXy0vQtlJRqq7wyaCH3Bk0vhfjLYf4YyM0474/5aeNB1qQe5aG+LakW5F9h8VQ5lBQ58wVEtYL2N9tOo1SFCwrw49F+Ldl68Dhfr95rO06VpIXcW/R9DgqOO8X8PBQWl/Lqz1tpUS+M6zvFVnA4dd5WT4Qj26HPs86YCKWqoKvbNqB9bCSvzdxGflHFDdxVDi3k3qJugjNJyPL34ci5L0gwZXkqu4/k8sSVCfj7SSUEVOcsPwvmvgSNukHLK22nUarSiAhPXJXAwax8PtJlTiucFnJv0vtJ8A9yLlM6B8fzi3hzdjLdmtbm0pZRlRROnbMFr0FOOlzxAoj+caWqtq5Na5OUUJf35uwgI6fQdpwqRQu5Nwmv76yOtvlbSF161m97e852MnIKeeKqVogWDM+QuRuWvgvtb4KYTrbTKOUWj/VrRW5RiU4SU8G0kHubi++DsPow46mzmrp19+EcPlq4i0GdYmkXW8MNAdVZmfUM+AVAn2dsJ1HKbeLrhTOkSyMmLUth68Es23GqDC3k3iaoOvT5m3O50vovzrj5C9O3EOTvx6NX6HKYHiNlsdOr0v0BiIi2nUYptxrVtwUR1QJ57vvNOklMBdFC7o3a3wzRFzqtuoLjp9xsQXI6szance9lzakbEeLGgOqUSkvh5ycgIgYu/qvtNEq5XY3QIEYltWDxjiPM3JxmO06VoIXcG/n5wVVjIPsgzP/nSTcpLinl+R8206hWKMO663KYHmP9Z3BgLST9HYJCbadRyopbujSiRb0wXvhxCwXFejlaeWkh91axiU7LfOm7J70cbfLyVLalZfPU1QmEBOrkLx4hPwt+Ge0MbmszyHYapawJ8PfjmWsuIDUjl48W7rYdx+tpIfdmSc+CfzDMePK/nj6aW8i/Zm3j4ma1ubx1PUvh1P+Y9wpkpzm9KX76v57ybT3i65CUUI+3f03mUFa+7TheTX+beLPw+tDrEWfVrORZvz/96ozfOJ5fzDP9W+vlZp4ibRMsfQ86DdXLzZRyefrqBIpKnDUg1PnTQu7tutztrFn+8+NQXMCa1EymLE/ltoub0Kp+hO10CpzLBH98GEIinalYlVIANKlTnRG9mjJt7X4W79DV0c6XFnJvFxAE/V6BI9spWfgmT0/bSN3wYEb1bWE7mSqz/gtIXewMcNO1xpX6L/f0bk6jWqH8bdpGCotLbcfxSlrIq4L4JGfd8vljyD6wjWeuuYCwYF2AwyPkH4OZTzvd6R1vtZ1GKY8TEujP6AEXsCM9h/cX7LQdxytpIa8iDvcYTW6JP29HfMpVbXSAm8eY86Izn/rVr+kAN6VOoXfLuvS7oD7//jWZPRm5tuN4Hf3NUkU8Ny+T10tvoG3BamTT17bjKIB9q2H5OEgcBtEdbadRyqM90781fiKM/n6T7SheRwt5FbAw+TDfrdtPRM8RTsH4+QnIO2o7lm8rKYLvRkL1us5lgkqp04quUY0HkuL5ZcshZmw6aDuOVylXIReRWiIyS0SSXT9rnmSb3iKy9oRbvogMdL02XkR2nfBah/Lk8UW5hcU88c164upUZ0TvFnDNG5B7+JyXOlUVbPFbkLbB6VIPibSdRimvcHv3OFrVD+dv0zZyLK/IdhyvUd4W+ePAbGNMPDDb9fi/GGPmGGM6GGM6AJcBucDMEzZ5pOx1Y8zacubxOWNm/MaejDxeub6dM4NbdAfoMgJWfgwpS2zH802Ht8PcV6D1AEi4xnYapbxGoL8fYwa150hOIS/+qNeWn63yFvIBwATX/QnAwDNsPwj4yRijoxkqwMrdGYxfvJv/69aYznEnXNbU+ymo0RC+vRcK9VC7VWkpfD8SAkPgyjG20yjlddrGRjK8Z1M+X7mHBcnptuN4hfIW8nrGmAOu+weBMw2XvhGY8ofnXhCR9SLyuogElzOPz8gvKuHRqeuJjqzGo/1a/feLwWFw7duQsQPmvGAnoK9aPQFSFsHlL0C4Xj2g1Pl4ICmeplHVeXzqBnIKim3H8XhnLOQi8ouIbDzJbcCJ2xlnYdlTLi4rIg2AtsCME55+AmgFXATUAh47zfvvEpGVIrIyPV3/SntrdjI703N46U9tT37NeNNekHgHLHkHUpe6P6AvOrbXWVo27hLoOMR2GqW8VkigP69e3479x/IYM+M323E83hkLuTEmyRjT5iS3b4E0V4EuK9SHTvNRfwa+Mcb8PoLBGHPAOAqAj4HOp8kxzhiTaIxJjIqKOtvvVyVt3HeMsfN3MrhTLJe0OM2x6DsaIhvCtHugKM99AX1RaSlMuxtKS6D/W6Bz3CtVLolNajG0WxMmLNnNit0ZtuN4tPJ2rX8HDHXdHwp8e5ptb+IP3eon/BEgOOfXN5YzT5WXX1TCqM/XUrt6EE9f3fr0GweHwwBXF/uv/3BPQF+1fCzsmg/9XoRauv67UhXhkStaEluzGg99sY5s7WI/pfIW8peBviKSDCS5HiMiiSLyQdlGItIEaAjM+8P7J4nIBmADUAfQanMGL/+0leRD2fxzcHsiQwPP/IamvZwJSZa8AymLKz+gL0r/DX75O7ToBxcOPePmSqmzUz04gH/9uQN7M3N5TieKOaVyFXJjzBFjTB9jTLyrCz7D9fxKY8ydJ2y32xgTY4wp/cP7LzPGtHV11Q8xxmSXJ09VN29bOuMX7+b27k1O36X+R32fg5pNYOpwyMustHw+qaQIvr4LAkO1S12pSnBRk1rcc2lzvli5l583HjjzG3yQzuzmJTJyCnn4y3W0qBfGY38cpX4mweFw/YeQfRB+GOUsq6kqxrxX4cBa6P+GjlJXqpLcnxRPu9hIHv96A2lZ+bbjeBwt5F7AGMPjU9dzLLeIN27o6Ez8cq5iOznXl2/6BtZOqviQvih1KSx4Ddrd6Ez+opSqFIH+frxxQwcKikp5+Mt1lJZqY+REWsi9wOcr9jBzcxqPXNGS1tER5/9B3e+HJj1h+qPO7GPq/OUcga+GORPvXPWq7TRKVXlNo8J4+poEFiQf5uPFu23H8ShayD3c5v1ZPPvdJno0r8MdPco5GtrPH/40DgKCYOowKC6smJC+prQUpo1wlicdPEHnUlfKTW7u3Ii+revx8k9bWJ2q433KaCH3YFn5RdwzaRU1QgN548YO+PlVwECqiGhn1rcD62DmU+X/PF+0+C1InglXvOjMba+UcgsR4Z+D2lM/MoT7Jq0mI0cbI6CF3GMZY3jky3XszczjnZsvpE5YBc5em3ANdL3XWSt73ecV97m+IHUpzH4OWg+Ei+488/ZKqQoVGRrIe7d04nBOIfd/toYSPV+uhdxTfbBgFzM2pfH4la1IbFLrzG84V31HQ+Me8P39cHBDxX9+VZRz2HVevBFcq5eaKWVLm5hIRl97AQuSD/PvX5Ntx7FOC7kHWrE7g5d/3sqVbeqX/7z4qfgHwuCPoVpN+OwWyNUpEE+ruBA+vxVyj8Dg8XpeXCnLbryoIX+6MIY3Zyczb5tvr7+hhdzD7MnI5e5PV9GoViivDmqHVGarL6wu/HkiZO13JjUpLT3ze3yRMTD9IUhdDAPe0fPiSnkAEeGFgW1pWS+ckVPWsDPdd+cT00LuQY7nF3HnhJUUFJfy/v8lEh5yFlOwllfDi+DKV2D7LJg9uvL3542WjYXVE6HnQ9B2kO00SimXakH+jLs1EX8/Ydj4FWT66OA3LeQeoriklPsmr2F7ejbv3dKJ5nXD3LfzxGHObdEbsPJj9+3XG2yfDTOegJZXQ++nbadRSv1Bo9qhjLu1E/uP5jPi01UUFvtez6IWcg/x/A+bmbctnecHtKFHfB337lwErhwD8ZfDjw9B8iz37t9TpW+Dr26HqATn+ns//d9FKU+U2KQWrw5qx7JdGTz5zQaMj01Drb+ZPMD4RbuYsCSF4T3juLlLIzsh/ANg0MdQ7wL4YqhznbkvO7YXPrkO/IPgpikQ7MYeEqXUORvYMYb7+8Tz1aq9vDt3h+04bqWF3LJv1uxl9A+b6du6Ho9fmWA3THAY3PyFM5J90p/h6B67eWzJOeIU8YIsGPI11GxsO5FS6iw8kBTPgA7RjJnxG5OXpdqO4zZayC36eeNBHv5yPV3javPvmzriXxEzt5VXRAMY8hUU5cHEAZDlY8sGFhyHSdfD0VS46TNo0M52IqXUWRIRxgxqT++WUTw1bQPT1uyzHckttJBbMm9bOiOnrKFdbCTvD008vxXNKkvdBKeYZ6fBxGvheJrtRO5RXACf3QwH1jvXijfpbjuRUuocBQX48d6QTnSJq8VDX65jxqaDtiNVOi3kFizbeYS/fLKS5nXDGH9bZ8KCA2xH+l8NO8MtXzrniideC9lVfMKFojxnYpxd851rxVteaTuRUuo8hQT688HQi2gbE8lfJ69hfhWfMEYLuZstTD7MsPEriKlRjYl3dCYy1A3Xip+vxhc758wzU5xu9pwjthNVjoLjMGkwbP8F+r8JHW6ynUgpVU5hwQFMuL0zzeqGMXziSmZvqbo9i1rI3Wj6hgMMG7+C2JqhTBnetWIXQqkscT2dUdsZO2D8VVVvAFxeJkwcCCmL4U/vQ6fbbCdSSlWQyNBAJt3ZhZb1w7nrk1VMXbXXdqRKoYXcTSYvS+XeyatpFxvJF3/pRt2IENuRzl6z3k43e9Z++LBv1VlkJTsdxveHg+udqWrbDbadSClVwWpVD2Ly8K6/nzP/cOEu25EqnBbySmaM4Z0523nymw1c2iKKT+7o4tnd6acSdwkM+xkQ+OhK2DnXdqLyObgRPrgMjmx3ehwSrrGdSClVScKCA/j49ovod0F9nv9hM2NmbKW0Ci1/qoW8EuUWFjPys7WMmfEbAztEM+7/EqkW5EGj089VvQvgzlkQGQufDoK1k20nOj9bvocPL4eSIrjtR2ieZDuRUqqSBQf4884tF3JT54a8M2cHf/l0FVn5RbZjVQgt5JVk1+EcrntnMT+u38+j/Vry+g0dCPSvAoc7MtZpmTfqCtPuhu9GOiO+vYExMO9V+HwI1G0Fw+dAbCfbqZRSbuLvJ7x4XVueuaY1v249xMC3F7Et7bjtWOVWBSqL5/llcxrX/nshh47nM3FYF+65tHnlLkfqbtVqwK3ToMeDsHoCfJAEh5Ntpzq97EMw5SaY8wK0uxFum+5MfqOU8ikiwrAecUwZ3pWs/GIGvrOI79fttx2rXMQbJ5dPTEw0K1eutB3jfxzLK+Kl6Vv4bMUe2sZE8t6QC4mtGWo7VuVK/gW+Hg4lhXD1a9DuBmcRFk+y+Vv4YRQUZEPf0dBlhOdlVEq5XVpWPvdMWs2qlEyu6xjD365pTa3qQbZjnZSIrDLGJJ70NS3kFWPGpoP8bdpGDmcXMLxnU0b1beFZs7VVpmP7YOodkLoE4no5Bb1OvO1UzqVl0x+BDV9Cgw5w3VinS10ppVwKi0t5+9dk3p27g8hqgTx77QX0b9fA43pRtZBXoj0Zubz00xambzhIQoMIXr2+HW1jI23Hcr/SElj5Ecx+HorzoPv90PMhCKzm/izFBU6Wea86C59c8ij0fBD8vfBqAaWUW2w5kMXjU9ezbu8xkhLq8uRVCTSN8pxVD7WQV4K9mbm8/et2vlq1Fz8/4f4+8dx1SdOqMaCtPLIPwcy/wfrPICIWuo+EjrdCkBtOMZSWwsap8OvzcDTF6R24/B+68IlS6qyUlBo+XrSL12Zuo6C4hIEdYxh5WTxN6lS3HU0LeUXaejCLiUtS+HLlHgTh5i6NuPvSZtTzpgle3GHXAvj1H7BnKYTWhi53Q+c7nSVSK1reUVj/hdMKT98C9dtC0mho3qfi96WUqvIOZxcwdt4OJi5JobjU8KeOMQy9uAkXREdY63KvtEIuIoOBvwMJQGdjzEmrq4j0A94E/IEPjDEvu56PAz4DagOrgFuNMYVn2q+7C3laVj7frd3P12v2seVAFoH+wg0XNeTe3s1pEGmh69ibpCyBha9D8gwIqAbxSZAwAFpcASER5/+5xYWwZ5lzLfumb5zu/OiO0PVeaHM9+Pl4z4hSqtwOHc/nP3N38umyFAqLS2lRL4yBHWMY2CGG6Bru/d1fmYU8ASgFxgIPn6yQi4g/sA3oC+wFVgA3GWM2i8gXwNfGmM9E5D/AOmPMe2fab2UW8oLiEvZk5LEmNZM1e46yJvUovx3MotRA+9hIrusYQ//20dT2hnnSPcnBDbBqgjMZS/ZB8A9yur5jLoR6bZzJZmrGnbwAlxTB8YPOGuF7ljqt/dSlTvEOCnemVr1wKER3cP/3UkpVeUdzC/lh/QG+WbOPVSmZiEDLeuF0bFSDjg1r0rFRDRrVDiU4oPIGOFd617qIzOXUhbwb8HdjzBWux0+4XnoZSAfqG2OK/7jd6VRkIX/jl23M3JTGsbwiMnMLyS0s+f218OAAOjSqQafGNenfPppmHjTwwWuVlsLeFc4lYdtnOVOkmlLntYAQCA53Wu6BIU6xz0l3zrtzwr/Tuhc4i7k06QlNL4Vg/e+ilHKPlCM5fL9uPyt2Z7ImNZOs/OLfX6sW6E/N0EAiQ4Po1SKKx6+suKtkTlfI3bEQdgxw4pJZe4EuON3pR40xxSc8H3OqDxGRu4C7ABo1alRh4UIC/WkQGUJCgwhqhAZSMzSQuhEhdGxYg2ZRYfj5edYlCF7Pzw8adXFuvAiFuZC+FdI2wuFtzrXexflQlOt0n0d3hIgYiIh2fkZ3gOp1bH8LpZSPaly7Ovff272mAAAExklEQVRd5lxeW1pq2HUkh7WpRzmYlU9mTiFH84o4mltISKD7Tu+dsZCLyC9A/ZO89JQx5tuKj3RyxphxwDhwWuQV9bkjejVjRK9mFfVx6lwFhTrd6zEX2k6ilFLnxM9PaBYVZr239oyF3BhT3hUl9gENT3gc63ruCFBDRAJcrfKy55VSSil1ltzR9l8BxItInIgEATcC3xnn5PwcYJBru6GA21r4SimlVFVQrkIuIteJyF6gG/CjiMxwPR8tItMBXK3t+4AZwBbgC2PMJtdHPAY8KCLbcc6Zf1iePEoppZSv0QlhlFJKKQ93ulHrOmuGUkop5cW0kCullFJeTAu5Ukop5cW0kCullFJeTAu5Ukop5cW0kCullFJeTAu5Ukop5cW0kCullFJeTAu5Ukop5cW8cmY3EUkHUty82zrAYTfv09P4+jHw9e8PegxAj4Gvf3+wcwwaG2OiTvaCVxZyG0Rk5ammx/MVvn4MfP37gx4D0GPg698fPO8YaNe6Ukop5cW0kCullFJeTAv52RtnO4AH8PVj4OvfH/QYgB4DX//+4GHHQM+RK6WUUl5MW+RKKaWUF9NCfg5E5HkRWS8ia0VkpohE287kbiIyRkS2uo7DNyJSw3YmdxKRwSKySURKRcRjRq26g4j0E5HfRGS7iDxuO4+7ichHInJIRDbazmKDiDQUkTkistn1/8D9tjO5k4iEiMhyEVnn+v6jbWcqo13r50BEIowxWa77I4HWxpgRlmO5lYhcDvxqjCkWkVcAjDGPWY7lNiKSAJQCY4GHjTErLUdyCxHxB7YBfYG9wArgJmPMZqvB3EhELgGygYnGmDa287ibiDQAGhhjVotIOLAKGOgr/wZERIDqxphsEQkEFgL3G2OWWo6mLfJzUVbEXaoDPvdXkDFmpjGm2PVwKRBrM4+7GWO2GGN+s53Dgs7AdmPMTmNMIfAZMMByJrcyxswHMmznsMUYc8AYs9p1/ziwBYixm8p9jCPb9TDQdfOIGqCF/ByJyAsisge4BXjGdh7LhgE/2Q6h3CIG2HPC47340C9x9d9EpAnQEVhmN4l7iYi/iKwFDgGzjDEe8f21kP+BiPwiIhtPchsAYIx5yhjTEJgE3Gc3beU40zFwbfMUUIxzHKqUs/n+SvkqEQkDpgIP/KGXssozxpQYYzrg9ER2FhGPOMUSYDuApzHGJJ3lppOA6cCzlRjHijMdAxG5DbgG6GOq4CCLc/g34Ev2AQ1PeBzrek75ENe54anAJGPM17bz2GKMOSoic4B+gPXBj9oiPwciEn/CwwHAVltZbBGRfsCjwLXGmFzbeZTbrADiRSRORIKAG4HvLGdSbuQa7PUhsMUY8y/bedxNRKLKrtIRkWo4Az89ogboqPVzICJTgZY4o5ZTgBHGGJ9qlYjIdiAYOOJ6aqkvjdwXkeuAfwNRwFFgrTHmCrup3ENErgLeAPyBj4wxL1iO5FYiMgW4FGflqzTgWWPMh1ZDuZGI9AAWABtwfgcCPGmMmW4vlfuISDtgAs6/fz/gC2PMc3ZTObSQK6WUUl5Mu9aVUkopL6aFXCmllPJiWsiVUkopL6aFXCmllPJiWsiVUkopL6aFXCmllPJiWsiVUkopL6aFXCmllPJi/w/JYHk0SNM64gAAAABJRU5ErkJggg==\n",
"text/plain": [
"Axes.set_xlim
, Axes.set_ylim
)\n",
"\n",
"Invert the x-axis and y-axis.\n",
"\n",
"Axes.set_xlim(
$a$,
$b$)
: Set the x-axis range to [$a$, $b$]. The x-axis is inverted when $a>b$.Axes.set_ylim(
$a$,
$b$)
: Set the y-axis range to [$a$, $b$]. The y-axis is inverted when $a>b$.