{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "i6yO30PVE8fQ" }, "source": [ "# matplotlib tutorial (1) nitta@tsuda.ac.jp\n", "\n", "matplotlib is a very flexible system, and there are many ways to write it to achive a certain function. This is a useful feature at first glance, but it seems to be one of the reasons why matplotlib is confusing for beginners.\n", "\n", "Therefore, at least for beginners, we recommend that you follow the rules in this article and start using matplotlib.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "b8QgF5H0M8rg" }, "source": [ "
ax
with the following code.fig, ax = plt.subplots(rows, cols, figsize=(width * cols, height * rows))
plt.show()
only once at the end. plt
, not for each coordinate system.plt.show()
plt.savefig()
.plt
instead of each coordinate system.\n",
"The default resolution is low, so specify a resolution such as dpi=6400
.plt.savefig(filepath,dpi=dpi)
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x4OlLfueFGO2"
},
"source": [
"# Chapter 1: Understanding the Coordinate System (Axes Object)\n",
"\n",
"## 1-1: When ax is one coordinate system\n",
"\n",
"If rows == 1 and cols == 1
in the function call of plt.subplots()
, one coordinate system (Axes object) is returned to ax
, so drawing commands are issued for this ax
. \n",
"\n",
"fig, ax = plt.subplots(1, 1, ...)
plt.show()
draws it inline in the jupyter notebook page.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 374
},
"executionInfo": {
"elapsed": 592,
"status": "ok",
"timestamp": 1648474514444,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "IKDLzi6RE59P",
"outputId": "c2bc000f-202f-46a0-dc3c-eac80638877a"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFlCAYAAABMeCkPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hUZf428PtJ7wkphPQQSgodQlcUlY5lLWuj6oru6m91da2r7rv2smvZXfsqAbtiWemIFIWEktBJIwmTSnrvyeR5/0jiIoYwSWbmlLk/15VLYIaZ7+GYuedMzn0eIaUEERERWYad0gMQERHpGYOWiIjIghi0REREFsSgJSIisiAGLRERkQUxaImIiCzIwRIP6u/vLyMjIy3x0ERERKqTkpJSLqUM6Ok2iwRtZGQkkpOTLfHQREREqiOEyD3fbfzomIiIyIIYtERERBbEoCUiIrIgBi0REZEFMWiJiIgsiEFLRERkQQxaIiIiC2LQEhERWRCDloiIyIIuGLRCiGghxJGzvmqFEPdZYzgiIiKtu+AlGKWUGQDGA4AQwh5AIYBvLDwXERGRLvT1o+PLAWRLKc97TUciIurU2NqOnLJ6pccghfU1aG8C8GlPNwghVgkhkoUQyWVlZQOfjIhI457ekIb5r/0EQ3mD0qOQgkwOWiGEE4CrAHzZ0+1SynellPFSyviAgB5XCiIishlVDa345nABWo0deG5TmtLjkIL6ckS7AMAhKWWJpYYhItKLz5Pz0dzWgWvGB2NbagkSs8qVHokU0pegvRnn+diYiIj+p93YgQ+TcjEtyhcvXDcWIT6ueGpDKowdUunRSAEmBa0Qwh3AHABfW3YcIiLt255WisLqJqyYMRQujvZ4dGEM0ovr8EVyvtKjkQJMClopZYOU0k9KWWPpgYiItG5NogEhPq64InYwAGDRmCDERwzC37dmoLa5TeHpyNp4ZSgiIjNKL65FUk4Flk6PgIN950usEAJPXhmHioZWvLEzS+EJydoYtEREZrQmMRfODna4MT7sF38+NtQH100Mxeo9BuRWsO5jSxi0RERmUt3YWen5zYQQDHJ3+tXtD82Phr2dwPOb0hWYjpTCoCUiMpMvuio9y2dE9nh7oJcL/nDpMGw5WYyk7ArrDkeKYdASEZmBsUNibVIupg71RWyQ13nvd8esKAR7u+Bp1n1sBoOWiMgMfkgrQUFVE1ac52i2m4ujPR5ZGIvUM7VYl8K6jy1g0BIRmUFCogHB3i6YExd4wfteOTYIE8N98PLWTNSx7qN7DFoiogHKLKlDYnYFlpxV6elNZ91nFMrrW/DmrmwrTEhKYtASEQ1QQqIBzg52uGlyuMl/Z3yYD66dEIL3fzqN/MpGC05HSmPQEhENQE1jG745VIirxwfDt4dKT28e7K77bObqPnrGoCUiGoAvkvPR1GY8b6WnN0HerrjrkmHYdLwY+3NY99ErBi0RUT8ZOyTW7jNgSqQvRgV79+sxVs2KQpC3C1f30TEGLRFRP+1IL0V+ZRNWzIzs92O4OtnjkQUxOFlUi68OFZhvOFINBi0RUT+tSTQgyNsFc02o9PTmqnHBmBDug5e3ZqC+pd1M05FaMGiJiPrhVEkd9mSVY8k00yo9vRFC4InFcSira8Fbu7i6j94waImI+mFNkgFODna4eYrplZ7eTAwfhGvGB+M91n10h0FLRNRHNU1t+CqlEFeP63ulpzcPzY+BnQBe3MLVffSEQUtE1EdfDqDS05tgH1fcOWsYNhw7g2RDpVkfm5TDoCUi6oPuVXomRw7C6JD+VXp6c+clURji1Vn36WDdRxcYtEREfbAroxR5lY1mP5rt5ubkgIcXRONYQQ2+OVxokecg62LQEhH1QUKiAUO8XDBv1BCLPcfV40IwLswHL21NRwPrPprHoCUiMlFWaT1+OlWOJdPC4TjASk9v7OwEnlwch5LaFryzm6v7aB2DlojIRGuTDHCyt8NNZqr09GZSxCBcNS4Y7/yYg8LqJos/H1kOg5aIyAS1zW1Yl1KAK8cFw9/D2SrP+fCCGADAi5tZ99EyBi0RkQnWJRegsdWIFRY6CaonIT6uuHNWFL47WoSUXNZ9tIpBS0R0AR0dEmuTDJgUMQhjQs1f6enNnZcMQ6CXM57akMa6j0YxaImILmB3ZhkMFZar9PTG3dkBD86LwdH8avz3KOs+WsSgJSK6gNWJBgR6OWPBaMtVenpz7YQQjAnxxoubM9DYyrqP1jBoiYh6kV1Wjx8zy3Dr1AiLVnp6Y2cn8OSVcSiubcY7u3MUmYH6j0FLRNSLtYmdlR5zrdLTX5MjfbFobBDe+TEbRaz7aAqDlojoPOq6Kj2LxwYhwNM6lZ7ePDI/Bh0SeImr+2gKg5aI6DzWpRSgodX8q/T0V5ivG+64eCi+PVKEQ3lVSo9DJmLQEhH1oKNrlZ4J4T4YF+aj9Dg/+/2lwxHg6Yyn1qdCStZ9tIBBS0TUg92nynC6vMGqF6gwhYezAx6cF40j+dX47miR0uOQCRi0REQ9WJNoQICnMxaMDlJ6lF+5fmIoRgV74YXN6WhqNSo9Dl0Ag5aI6Bw5ZfXYlVGGJVMj4OSgvpfJ7tV9ztQ0490fWfdRO/X9H0REpLC1SblwtBe4eWqY0qOc19QoPywcMwRv787GmRrWfdSMQUtEdJb6lvauSk8wBnu6KD1Orx5dEAtjh8TLWzKUHoV6waAlIjrLVykFqG9pV02lpzdhvm64/eKh+PpwIY7kVys9Dp0Hg5aIqEtHh8SaRAPGh/lgvIoqPb35w6XD4O/hjKfWn2TdR6UYtEREXX7KKkeOCis9vfF0ccSD80biUF411h87o/Q41AMGLRFRl4S9pxHg6YyFY9RX6enN9ZPCEBfkhRc2paG5jXUftWHQEhEBOF3egJ0ZZbhlSrgqKz29sbcTeGJxHIpqmvEe6z6qo63/m4iILGRtkgGO9gK3TlV2lZ7+mj7MD/NHDcGbu7JRUtus9Dh0FgYtEdm8+pZ2rEsuwMIxQRjspe5KT28eXRgDY4fES6z7qAqDlohs3teHClDX0q6pk6B6EuHnjpUXReKrQwU4VsC6j1owaInIpnVXesaFemNC+CClxxmwe2YPh7+HE1f3UREGLRHZtD1Z5cgua8CKmZFKj2IWni6OeGBuNJJzq7DxOOs+asCgJSKbtibRAH8PJ81Venrz2/gwxAzxxPOb0ln3UQEGLRHZrNyKBuzIKMUtUyPg7GCv9DhmY28n8OSVcSisbsL7e04rPY7NMylohRA+Qoh1Qoh0IUSaEGK6pQcjIrK0tUm5sBfarfT0ZsYwf8yNC8QbO7NQyrqPokw9on0dwBYpZQyAcQDSLDcSEZHlNbS044uD+Vg4JgiBGq709OaxhbFoM3bg5a2s+yjpgkErhPAGMAvA+wAgpWyVUvK8cSLStK8PF6JOI6v09FekvztWzhyKdYcKcLygRulxbJYpR7RDAZQBWC2EOCyE+I8Qwt3CcxERWYyUnZWesaHemBiujVV6+uuey4bD180JT29g3UcppgStA4CJAN6SUk4A0ADgkXPvJIRYJYRIFkIkl5WVmXlMIiLz2ZtVgazSeiyfHgkhhNLjWJSXiyPunzsSBwyV2HyiWOlxbJIpQVsAoEBKub/r9+vQGby/IKV8V0oZL6WMDwgIMOeMRERmlZB4Gv4eTlg8Tj+Vnt7c2FX3eY6r+yjigkErpSwGkC+EiO76o8sBpFp0KiIiC8mraMQP6aW4eUq4rio9vXGwt8MTi+NQUNWED/ay7mNtpp51/H8APhZCHAMwHsBzlhuJiMhy1iYZuio9EUqPYlUzh/vjithAvLEjC6V1rPtYk0lBK6U80vWx8Fgp5TVSyipLD0ZEZG4NLe34PDkf80cPwRBvfVZ6evOXRbFoNXbgH1szlR7FpvDKUERkM745XIi65nas1Ml1jftqqL87lk+PxBcp+ThRyLqPtTBoicgmdFd6Rod4YaIOVunpr/+7fAR8XB1Z97EiBi0R2YTE7AqcKq3HihlDdV/p6Y23qyPunxuN/acrsfUk6z7WwKAlIpuQkGiAr7sTFo+1jUpPb26eHIaRgR54dlMaWtpZ97E0Bi0R6V5+ZSO2p5XglinhcHG0jUpPb7rrPvmVTVi916D0OLrHoCUi3ftwXy7shMCt0/S3Sk9/XTwiAJfHDMa/d2ShrK5F6XF0jUFLRLrW2NqOzw7kYf7oIQjydlV6HFV5bFEsmtuMeOV7ru5jSQxaItK1bw8Xoba5HSt0vEpPfw0L8MCy6ZH47GA+Thax7mMpDFoi0i0pJRIST2NUsBfiI2y30tObey8fAW/WfSyKQUtEupWUU4HMknosn6H/VXr6y9vNEffPGYl9OZXYllqi9Di6xKAlIt1K2NtZ6blqXLDSo6jaLVPCMWKwB55j3cciGLREpEvdlZ6bJoex0nMBDvZ2eHxxHHIrGrEm0aD0OLrDoCUiXfpoXy6EEFgyzbZW6emvS0YGYHZ0AP71QxbK61n3MScGLRHpTlOrEZ8dzMe8UYEI9mGlx1R/WRSHxjYjXvmeq/uYE4OWiHTn2yOFqGlqw/LpkUqPoinDB3tg6bQIfHYgD2lnapUeRzcYtESkK92r9MQGeWHKUF+lx9Gc+64YAU8XRzyzkXUfc2HQEpGu7MupRHpxHVbMiGClpx983JzwpytGYG9WBbanlSo9ji4waIlIV9YkGuDj5oirx4coPYpm3TotAsMC3PHsxlS0tncoPY7mMWiJSDcKqhqxLbUYN03mKj0D4dhV9zFUNGJtkkHpcTSPQUtEuvHRvjwAwNLprPQM1OzowbhkZABe/+EUKlj3GRAGLRHpQnObEZ8dzMPcuCEIYaXHLB5fFIvGViNe3c66z0AwaIlIF/57pBDVjW1YMTNS6VF0Y0SgJ5ZMDccn+/OQUVyn9DiaxaAlIs2TUmL1XgNihnhiKis9ZnXfFSPh4ezA1X0GgEFLRJp34HR3pYer9JjbIHcn3HfFSOzJKseOdNZ9+oNBS0Sal5BogLcrKz2WsnR6BKIC3PHsxjTWffqBQUtEmlZY3YRtqSW4aUoYXJ1Y6bEER3s7PL4oFjnlDfhwX67S42gOg5aINO2jfbmQUmIpV+mxqNnRg3HxCH+8vj0TVQ2tSo+jKQxaItKs5jYjPjuQhzlxgQgd5Kb0OLomhMATi+NQ39KO11j36RMGLRFp1ndHilDV2IblMyKVHsUmjAz0xK1TI/DR/jycKmHdx1QMWiLSJCklEhINiA70xPQoP6XHsRl/mjMSbk72eGZjmtKjaAaDlog0KTm3CqlnarGclR6r8nV3wr2Xj8DuzDLszGDdxxQMWiLSpIS9nZWeayYEKz2KzVk2PRJD/d3xzIZUtBlZ97kQBi0Rac6ZmiZsOVmMGyeHwc3JQelxbI6Tgx3+sjAW2WUN+Jh1nwti0BKR5rDSo7zLYwfjouH+eHX7KVQ3su7TGwYtEWlKc5sRnx7Ix+WxgQjzZaVHKUIIPL44FnXNbXht+ymlx1E1Bi0Racr6o0WobGjFSlZ6FBczxAs3TwnHh/tykVXKus/5MGiJSDO6Kz0jAz0wfRgrPWpw/5yRcHO0x7Os+5wXg5aINCMltwoni1jpURM/D2f88fIR2JlRhl2s+/SIQUtEmpGQaICXiwN+M4Gr9KjJ8hmRiPRzwzMb09DOus+vMGiJSBOKa5qx+QQrPWrk5GCHxxbGIqu0Hp8cyFN6HNVh0BKRJny8PxcdUmLptEilR6EezIkLxIxhfnjl+0zUNLYpPY6qMGiJSPWa24z4ZH8eLo8JRLgfKz1q1L26T21TG17/gXWfszFoiUj1Nh47g4qGVqxgpUfVYoO8cOPkcKxNMiC7rF7pcVSDQUtEqtZd6Rk+2AMzh7PSo3YPzB0JF0d7PMe6z88YtESkaofyqnG8sIaVHo3w93DG/102HD+kl+LHzDKlx1EFBi0RqVpCogGeLg64lpUezVgxMxLhvm54ZmMq6z5g0BKRipXUNmPz8TP4bXwY3J1Z6dEKZwd7PLYwFpkl9fj0YL7S4yiOQUtEqvXxvlwYpcSy6VylR2vmjQrEtChfvLItAzVNtl33YdASkSq1tBvxyYE8XBY9GBF+7kqPQ33UXfepbmrDv2y87sOgJSJV2njsDMrrW7FiZqTSo1A/jQr2xo3xYUhINCDHhus+DFoiUp3uSs+wAHdcNNxf6XFoAB6YG91Z99mUrvQoijEpaIUQBiHEcSHEESFEsqWHIiLbdji/GscKarCClR7NC/B0xt2zh2N7Wgn2nCpXehxF9OWIdraUcryUMt5i0xARAViTaICnswOunRiq9ChkBitnRiLM1xVPb7DNug8/OqY+O1VSh+c3paGp1aj0KKRDpbXN2HjsDG5gpUc3XBzt8diCWGSU1OHzZNur+5gatBLANiFEihBiVU93EEKsEkIkCyGSy8p4NRC96uiQ+PO6Y3jnxxzc/8URdHRIpUcinfl4fx4rPTo0f/QQTBnqi39sy0Rts23VfUwN2ouklBMBLABwtxBi1rl3kFK+K6WMl1LGBwQEmHVIUo//Hi3E0fxqXDIyAJtPFOOlrRlKj0Q60tregY/352F29GBE+rPSoydCCDy5OA5Vja34944spcexKpOCVkpZ2PXfUgDfAJhiyaFInRpb2/Hi5gyMDfXG6hWTcevUcLy9OxufcaFnMpNNx8+gvL4Fy7lKjy6NDvHGDZNCsXrvaRjKG5Qex2ouGLRCCHchhGf3rwHMBXDC0oOR+ryzOwfFtc14cnEc7OwE/nbVKMwaGYDHvz2BvVm2eTYhmdfqRAOiAtxxMSs9uvXnudFwsrfDc5tsZ3UfU45oAwHsEUIcBXAAwEYp5RbLjkVqU1TdhHd+zMbisUGIj/QFADjY2+GNWyZgWIAH7vooBadK6hSekrTscF4VjuZXY/n0SNjZsdKjV4O9XPCH2cOxLbUEiTbyBv2CQSulzJFSjuv6GiWlfNYag5G6vLQlHR0SeGRBzC/+3NPFEe+viIezgz1WJhxEeX2LQhOS1q1JNMDD2QHXTWKlR+9uv2goQnxc8dSGVBht4IRK1nvogg7lVeHbI0VYdXEUQge5/er20EFueH95PMrrW3DH2mQ0t7H2Q31TWteMjcfP4PpJofBgpUf3XBzt8ejCGKQX1+ELG6j7MGipV1JKPLU+FQGezvj9pcPOe79xYT547cbxOJJfjQe+PMraD/XJJ/vz0GaUPAnKhiwaE4T4iEH4+9YM3dd9GLTUq++OFuFIfjUemhd9wYsHzB8dhEfmx2DjsTP4x/es/ZBpuis9l0YHYCgrPTZDCIEnr4xDRUMr3tip77oPg5bOq6nViBc2p2N0iBeuM/FSeKtmReHmKWF4Y2e2TXwkRAO3+cQZlNWx0mOLxob64LqJoVi9x4DcCv3WfRi0dF7v/piDMzXNeHLxKJPPAhVC4KmrR+PiEf547OvjSMy2jbMKqf8SEg0Y6u+OS0bwQje26KH50bC3E3hex6v7MGipR2dqmvD27mwsGhOEKUN9+/R3He3t8MatEzHU3x13fZiCrFLbXYeSenc0vxqH86qxbHoEKz02KtDLBX+4dBi2nCxGUnaF0uNYBIOWevTylgwYpfxVncdUXi6O+GDFZDg52OG2hIOoYO2HerAm0QB3J3tcz0qPTbtjVhSCvV3wtE7rPgxa+pUj+dX4+nAhfnfRUIT5/rrOY6owXze8tyweJbXNWPVhCms/9AtldS1Yf6wI108KhaeLo9LjkIJcHO3xyMJYpJ6pxboU/Z3bwaClX+is85yEv4cz/jB7+IAfb0L4ILx643ik5FbhoXXHIKX+3q1S/3x6oLPSs4wnQRGAK8cGYWK4D17emok6ndV9GLT0C+uPncGhvM46j7kuHLBwTBAemh+N744W4dXvM83ymKRtre0d+GhfLmaNDMCwAA+lxyEV6Kz7jEJ5fQve3JWt9DhmxaClnzW3GfHCpjSMCvYy+2Xwfn/JMNwYH4Z/7sjCVykFZn1s0p4tJ4tRWteClTyapbOMD/PBtRNC8P5Pp5Ff2aj0OGbDoKWfvfdjDopqmvHE4jjYm/kMUCEEnvnNaMwY5odHvj6GfTn6PLuQTJOw9zQi/dxwyUhWeuiXHuyu+2zWz+o+DFoCAJTUNuPNXdlYMHoIpkX5WeQ5HO3t8NatkxDu64Y7P0xBThlrP7boWEE1DuVVYxlX6aEeBHm74q5LhmHT8WLs18kbcgYtAQBe2pIBY4fEowtiLfo83m6OWL1iChzsBG5LOIjKhlaLPh+pT0KiAW5O9rg+npUe6tmqWVEI8nbRzeo+DFrCsYJqfHWoALddNBThfv2v85gq3M8N7y6LR1FNM+78MBkt7az92Iry+hZsONq5So8XKz10Hq5O9nhkQQxOFtXiq0PaP6eDQWvjulfn8fdwwt2zz786j7lNihiEf9wwDgcNVXjkq+Os/diIT/fnodXYgWXTI5UehVTuqnHBmBDug5e3ZqC+pV3pcQaEQWvjNh4/g+TcKvx5brTVLxpw5bhg/HnuSHxzuBCv/3DKqs9N1tdm7MBH+3Nx8Qh/DB/MSg/1TgiBJxbHoayuBW/t0vbqPgxaG9bcZsTzm9IRG+SFG+LDFJnh7tnDcd3EULy2/RS+PVyoyAxkHVtOFKOktgUrWOkhE00MH4RrxgfjPY3XfRi0Nuz9PadRWN2EJxbHmr3OYyohBJ6/dgymRfnioXXHcNBQqcgcZHlrEg2I8HPD7OjBSo9CGvLQ/BjYCeCFLdpd3YdBa6NKa5vxxs4szBsViBnD/BWdxcnBDm8vmYTQQa5YtTYZhnL9rktpq04U1iA5twpLp3GVHuqbYB9X3DlrGDYeO6PZN+IMWhv18tYMtBk78NhCy9Z5TOXj5oTVKycDAG5LOIjqRtZ+9KS70qPUjyhI2+68JApDvFzw1PpUdGiw7sOgtUHHC2qw7lABbps5FBF+7kqP87MIP3e8uyweBVVNuOujFLS2dyg9EplBRX0LvjtahGsnhsDblZUe6js3Jwc8vCAaxwtr8LUGz+Vg0NoYKSWe3pAKXzcn3H3ZwFfnMbfJkb546fqx2JdTiUe/Zu1HDz47mI/W9g4sZ6WHBuDqcSEYF+aDl7ako0FjdR8GrY3ZfKIYBwyVeGButGovGHDNhBDcd8UIfHWoAG/s1PZp/bauzdiBD5NycdFwf4wI9FR6HNIwOzuBJxfHobSuBW/v1tbqPgxaG9LcZsRzm9IQM8QTN05W98/K7r18BH4zIQR/35aJ9UeLlB6H+mnbyRIU1zaz0kNmMSliEK4aF4x3f8xBQZV26j4MWhvywd7TKKhqwpMWWJ3H3IQQeOG6MZgS6YsHvjyKlFxtnm1o6xISTyPM1xWzY1jpIfN4eEEMAODFLRkKT2I6Bq2NKK1rxhs7sjAnLhAzhitb5zGVs4M93lk6CcHeLrhjbQryKrTzDpY6Kz0HDVVYPj1S9W/sSDtCfFxx56worD9apJk34AxaG/GPrZloVVGdx1SD3J3wwYrJ6JASKxMOoKaxTemRyERrEg1wdWSlh8zvzkuGIdDLWTN1HwatDThRWIMvUvKxYkYkhvqrp85jqqgAD7yzZBLyKhvx+49Z+9GCyoZW/JeVHrIQd2cHPDQvBkcLavDtEfXXfRi0Otdd5xnk5oR7Lhuh9Dj9NjXKDy9cOxaJ2RV4/FvWftTu0wN5nZUengRFFvKbCSEYG+qNF7eko7FV3XUfBq3ObT1ZjP2nK3H/nJGaP7K4blIo/njZcHyRXIC3NHZ6vy1pN3bgo325mDncDyNZ6SEL6a77lNS24O3dOUqP0ysGrY61tBvx7KY0RAd64iaV13lM9ac5I3HVuGC8tCUDG4+dUXoc6sG21BKcqWnmBSrI4uIjfbF4bBDe2Z2Nwuompcc5Lwatjq3ea0B+ZRMeXxwLB3t97GohBF66fiziIwbh/i+O4FBeldIj0TkSEg0IHeSKy2MDlR6FbMAjC2IgAbyk4tV99PHqS79SVteCf+/IwhWxg3HxiAClxzErF8fO2k+glwtWrU3W9DqVepNaVIsDpyuxbHoEKz1kFaGD3LDq4ij890gRUnLV+cabQatTr3yfgeY2o+bqPKby83DGBysmo7W9A7clHERNE2s/atBd6bkxPlzpUciG/P7SYQjwdMbTG9RZ92HQ6tDJohp8djAfy2dEIirAQ+lxLGb4YA+8vXQSTpc34O6PD6HNyNqPkqoaWvHtkUJcMyEE3m7aPvGOtKWz7hONI/nV+E6Fl2xl0OpMd53Hx9URf9RwncdUM4b54/lrx2BPVjme/O8J1n4U9NnBfLS0d/C6xqSI6yaGYnSIF17cko6mVqPS4/wCg1ZntqWWYF9OV53HRo4qbogPw92zh+HTA/l490d1n+avV+3GDnyYZMD0KD9ED2Glh6yvs+4zCmdqmlX3OsCg1ZGW9s7VeUYM9sDNU2zrZ2QPzInG4rFBeGFLOracYO3H2ranlaCophkrZkYqPQrZsClDfbFoTBDe3p2NMzXqqfswaHVkTaIBuRWNeGJxnG7qPKaysxP4+w3jMD7MB/d9fgRH86uVHsmmrN5rQIiPK65gpYcU9siCGBilxMsqWt3Htl6Nday8vgX/+iELl8UMxqyR+qrzmMrF0R7vLYtHgKczbl+TrKn1KrUs7Uwt9rPSQyoR5uuG3100FF8fLsQRlbzhZtDqxCvfZ6JJx3UeU/l7OGP1isloaTfi9oRk1Daz9mNpa5MMcHG0w406ufoYad8fZg+Hv4cznlp/UhUnSDJodSDtTC0+O5CHpdMjMHywfus8pho+2BNvL5mE7LJ63PPJYbSz9mMx1Y2t+OZwIX4zIQQ+bk5Kj0MEAPDoqvscyqvGehVcqpVBq3FSSjyzMRVero6493L913lMNXO4P579zWj8mFmGv36njne1evT5wXw0t3GVHlKf6yaFYlSwF17YlIbmNmXrPgxajdueVoq9WRX40xUjeURxjhsnh+OuS4bh4/15eH/PaaXH0R1jh8TapFxMi/JFzBAvpcch+gV7O4EnFsehqKYZ7ylc92HQalhrewee3ZiK4YM9cMtU26rzmOqhedFYOGYInt2Uhq0ni5UeR1e2p123iNYAABoXSURBVJWgsLqJF6gg1ZoW5YcFo4fgzV3ZKKltVmwOBq2GrU0ywFDRiMcXxcLRxuo8prKzE3jlt+MxNtQH9312BMcLapQeSTcSWOkhDXh0QSyMHRIvKVj34auzRlXUt+D1H07h0ugAXBo9WOlxVM3F0R7/WRYPX3cn3L7mIIpUvG6lVmQU1yEppwJLpkXYXGebtCXczw23XTQUXx0qwLECZeo+/A7RqFe3Z6Kx1YjHF9l2ncdUAZ7OWL1yMppajbgt4SDqW9qVHknTEhINcHaww02s9JAG3D17GPw9nPDU+lRFToxk0GpQRnEdPtmfh6XTIjB8MK8ra6qRgZ54c8lEnCqtxz2fHGLtp59qGtvwzeECXDM+BIPceQIeqZ+niyP+PDcayblV2Hjc+nUfk4NWCGEvhDgshNhgyYGod92r83i6sM7THxePCMDTV4/GrowyPLVBmXe3Wvd5ch4rPaQ5N8SHITbIC89vSrd63acvR7T3Akiz1CBkmh3ppdiTVY77rhjBo4l+umVqOFbNisLapFys3mtQehxN6a70TBnqi7hgVnpIOzrrPrEorG6yet3PpKAVQoQCWATgP5Ydh3rTWedJQ1SAO5ZMi1B6HE17ZH4M5o0KxNMbU7E9tUTpcTTjh7QSFFQ1YSWPZkmDZgzzx7xRgXhjZxZKrVj3MfWI9jUADwE47w+1hBCrhBDJQojksrIyswxHv/ThvlzklDfgiUVxrPMMkJ2dwGs3TsCYEG/88bPDOFHI2o8p1iQZEOztgjlxrPSQNj22MBZtxg58kZxvtee84Ku1EGIxgFIpZUpv95NSviuljJdSxgcE2ObqMZZU2dCK17dnYtbIAFwazX9fc3B16qz9+Lg64vY1B1W1fqUaZZbUYW9WBW5lpYc0LMLPHd/dcxHunj3cas9pynfLTABXCSEMAD4DcJkQ4iOLTkW/8tr2TDR01XmE4FJk5jLYywUfrJyMhpbO1X4aWPs5rzWJBjg52OHmKbwKGWlbbJCXVV9HLxi0UspHpZShUspIADcB2CGlXGLxyehnmSV1+Hh/Hm6dGo6RgazzmFvMEC/8+5YJyCipwx8/PQxjB89EPldNYxu+PlSIq8cFw5cn4RH1CT//UbnuOo+7kz3uu2Kk0uPo1qXRg/H/rhqFH9JL8fSGVKXHUZ0vU/LR1GZkpYeoHxz6cmcp5S4AuywyCfVoV0YZfjpVjicWx/FIwsKWTouAobwB7+85jaH+7gyVLsYOiTVJBkyOHITRId5Kj0OkOTyiVbE2Ywee3piKKH93LGWdxyoeWxiLK2ID8bf1J7EjnbUfANiZXor8yiasmDFU6VGINIlBq2If7ctFTlkD/rIoFk4O3FXWYG8n8M+bxyMu2Av/98lhpBbVKj2S4hISDRji5YK5o1jpIeoPvnqrVFVDK17bfgoXj/DHZTFcncea3Jwc8P7yyfDqqv0ouY6l0k6V1GFPVjmWTo9gd5uon/ido1Kv/3AKdc1teHxRHOs8Cgj0csH7yyejtqkNt685iMZW26z9rEnqrPRwlR6i/mPQqlBWaR0+3JeLW6aGI3oI6zxKiQv2wr9vmYjUolr88dMjNlf7qWnqrPRcNS4Yfh7OSo9DpFkMWhV6ZmMa3Jzs8SfWeRQ3O2Yw/nrlKGxPK8Hzm2xrTY0vk/PR2GrECp59TTQgfar3kOXtzCjFrowyPL4olkcRKrF8RiROlzfgP3tOI9LfNhZ06F6lJz6ClR6igeIRrYq0GTtX54n0c8Oy6ZFKj0NneWJxHC6LGYy/fncSuzP1v2jGroxS5FU2sktMZAYMWhX5ZH8eskrr8ZdFcazzqExn7WcCRgZ64u6PDyG9WN+1n4REAwK9nDF/9BClRyHSPL6aq0R1Yyte3Z6JmcP9cEUs6zxq5OHsgA9WxMPd2R63JySjtE6ftZ+s0nr8dKocS6ay0kNkDvwuUonXfziF2ibWedQuyNsV7y+fjMqGVtyxJhlNrUalRzK7tUkGONnb4eapXKWHyBwYtCqQVVqPD5NycdOUcMQGeSk9Dl3A6BBv/PPmCThWWIM/fX4EHTqq/dQ2t2FdSgEWjwuCP0/GIzILBq0KPLcpDa6O9rh/Dus8WjEnLhCPL4rDlpPFeHFLutLjmM265AI0thqxktc1JjIb1nsUtjuzDDvSS/HYwhgeQWjMbTMjYShvwDs/5iDS313zC6J3dEisTTJgYrgPxoSy0kNkLjyiVVC7sQPPbEhFhJ8baxQaJITAX6+Mw6XRAXj82xP46ZS2az+7M8tgqGjEipk8miUyJwatgj49kIdTpfV4bGEsnB3slR6H+sHB3g7/unkCRgz2wB8+OoTMkjqlR+q31YkGDPZ0xgJWeojMikGrkJrGNrzyfSamR/lhbhyXH9MyTxdHvL9iMlyc7LFy9UGU1bUoPVKfZZfV48fMMiyZxkoPkbnxO0oh/9pxCtVNbXhiMes8ehDi44r3l8ejoqEFd6xNRnObtmo/axO7Kj0a/zkzkRoxaBWQU1aPhEQDbpochrhg1nn0YmyoD16/aQKOFlTj/i+0U/up6670jA1CgCdPyCMyNwatAp7blA4XR3vcPyda6VHIzOaNGoLHFsRi0/FivLwtQ+lxTLIupQANrUaekEdkIaz3WNmeU+XYnlaCh+fH8OhBp3538VCcrmjAW7uyMdTPHb9V8aLpHV2r9EwI98G4MB+lxyHSJR7RWlG7sQNPb0hFmK8rVs6MVHocshAhBP521ShcPMIfj31zHHuzypUe6bx2nyrD6fIGrjlLZEEMWiv6PDkfGSV1eGxBLFwcWefRM0d7O7xx60REBbjjro9SkFWqztrPmkQDAjydsWB0kNKjEOkWg9ZKapvb8I9tmZgy1JdLj9kILxdHfLBiMpwd7LEy4SDK69VV+8kpq8eujDLcOjWcyzISWRC/u6zk3zuyUNXYiidZ57EpoYPc8J/l8Sira8EqldV+1iblwtFe4Bau0kNkUQxaKzCUN2D13tO4YVIoRofwGrK2ZnyYD1797XgcyqvGn788qoraT31LO9alFGDRmCAM9nRRehwiXWPQWsFzm9LgZG+HP89lncdWLRgThEcWxGDDsTN45ftMpcfBVykFqG9p53WNiayA9R4LS8wqx7bUEjw4LxqDvXjkYMvunBUFQ3kD/r0zCxF+brghXpnaT0eHxJpEA8aF+WA8Kz1EFscjWgsydkg8tSEVIT6uuP0iHjnYOiEEnr5mNC4a3ln7ScquUGSOn7LKkVPegJWs9BBZBYPWgr5Izkd6cR0eW8g6D3Xqrv1E+nXWfrLL6q0+Q8Le0/D3cMbCMaz0EFkDg9ZCapvb8PetGZgcOQgLx7DOQ//j7dpZ+3GwE7gt4SAqG1qt9tynyxuwk5UeIqvid5qFvLEzC5WNrXhy8SjWeehXwnzd8N7yeBTXNFu19rM2yQAHO4FbWekhshoGrQXkVjRg9R4DrpsYijGhrPNQzyaGD8Irvx2P5NwqPPzVMUhp2dpPfUs71iUXYNHYIJ6YR2RFDFoLeH5TOhzsBR6cxzoP9W7R2CA8OC8a/z1ShFe3n7Loc319qAB1Le1cpYfIyljvMbOk7ApsOVmMP88diUAeNZAJ/nDpMORWNOCfP5xCpJ8brp0Yavbn+LnSE+qNCaz0EFkVj2jNyNgh8XRXned3F0cpPQ5phBACz1wzBtOj/PDwV8ewP8f8tZ89WeXILmvA8hmRPGeAyMoYtGa0LiUfqWdq8ciCGNZ5qE+cHOzw9pJJCPd1w50fpeB0eYNZH39NogH+Hk5YNJaVHiJrY9CaSV1zG17emolJEYOwmC9m1A/ebo5YvWIK7ITAytUHUGWm2k9uRQN2ZJTilinhcHbgG0Aia2PQmsmbu7JRXt/C1XloQML93PDeskkoqmnGnR+moKV94LWftUm5sBcCt06LMMOERNRXDFozyK9sxPs/nca1E0Mwjiea0ABNivDF328YhwOGSjzy1fEB1X4aWtrxxcF8LBgTxJPziBTCs47N4PnNabC3E3hoXozSo5BOXDUuGLnlDfjH95mI9HPHvVeM6NfjfH24EHUt7VjBSg+RYhi0A7Q/pwKbjhfj/jkjMcSbRwxkPvdcNhyGika8uj0Tkf5uuHp8SJ/+vpSdlZ4xId6YGM5PWoiUwo+OB6B7dZ5gbxfcwToPmZkQAs9fOwZTh/riwS+P4aChsk9/f29WBbJK67GClR4iRTFoB+CrQwU4WVSLhxfEwNWJZ3OS+Tk52OGdpZMQOsgVq9Ymw9CH2k9C4mn4uTth8TieBU+kJAZtP9W3tOPlrRmYEO6Dq8YFKz0O6ZiPmxM+WDEZAHBbwkFUN1649pNX0Ygf0ktxy1RWeoiUxqDtp7d2ZaGsjnUeso5If3e8uyweBVVNuOujFLS2d/R6/7VJhs5Kz1RWeoiUxqDth/zKRrz302n8ZkIIJoQPUnocshGTI33x0vVjsS+nEo9+ff7aT0NLOz5Pzse80UN4gh6RCvCs4354YUs67ATw0HyuzkPWdc2EEBgqGvDa9lMY6u+Gey77de3nm8OFqGtux0pWeohUgUHbRwcNldh47Azuu2IEgrxdlR6HbNC9l49AbkUj/r4tExF+7rjyrHMEuis9o4K9MCmCn7YQqQE/Ou6Djg6Jp9anIsjbBXfOGqb0OGSjhBB44boxmBLpiwe+PIqU3P/VfhKzK3CKlR4iVblg0AohXIQQB4QQR4UQJ4UQf7PGYGr09eFCHC+swcPzWechZTk72OOdpZM6O9xrU5BX0QgASEg0wNfd6RdHuUSkLFOOaFsAXCalHAdgPID5Qohplh1LfRpa2vHSlnSMD2Odh9RhkHtn7cfYIbEy4QBOFNbgh7QS3DwljMs0EqnIBYNWdqrv+q1j11f/r3KuUW/vzkZpXQuevDIOdnb8SI7UISrAA+8snYS8ykbc8HYShBBYwlV6iFTFpJ/RCiHshRBHAJQC+F5Kud+yY6lLQVUj3v0xB1ePD8ZE1nlIZaZF+eGFa8eiqc2IeaMCeZIekcqYdNaxlNIIYLwQwgfAN0KI0VLKE2ffRwixCsAqAAgPDzf7oEp6cUsGhAAens/VeUidrpsUimAfV8QGeSo9ChGdo09nHUspqwHsBDC/h9velVLGSynjAwICzDWf4lJyK7H+aBFWzRqGYB8eKZB6TR/mBx83J6XHIKJzmHLWcUDXkSyEEK4A5gBIt/RgatBd5wn0csZdl3B1HiIi6jtTPjoOArBGCGGPzmD+Qkq5wbJjqcO3RwpxtKAGr/x2HNyceG0PIiLquwumh5TyGIAJVphFVRpb2/HilnSMC/XGNX1ccJuIiKgbrwx1Hm/vzkFJLes8REQ0MAzaHhRWN+Gd3dm4clwwJkX4Kj0OERFpGIO2By9t6TzX62GuzkNERAPEoD1HSm4V/nukCKtmRSF0kJvS4xARkcYxaM/S0SHx9IZUDPZ0xl2XcHUeIiIaOAbtWb47WoQj+dV4aH4M3J1Z5yEiooFj0HZpbG3HC5vTMSbEG9dOYJ2HiIjMg0Hb5d0fc1Bc28w6DxERmRWDFsCZmia8vTsbi8YGYXIk6zxERGQ+DFoAL23JQIcEHuHqPEREZGY2H7SH86rwzeFC3HHxUIT5ss5DRETmZdNBK6XEUxtSEeDpjN9fOlzpcYiISIdsOmi/O1qEw3nVeHBeNDxY5yEiIguw2aBtajXixc3pGBXshesnhio9DhER6ZTNBu17P+WgqKYZTy5mnYeIiCzHJoO2uKYZb+3KxsIxQzA1yk/pcYiISMdsMmhf2poOY4fEowtilR6FiIh0zuaC9mh+Nb4+VIjbWechIiIrsKmg7a7z+Hs44w+XcnUeIiKyPJsK2g3HziAltwoPzhsJTxdHpcchIiIbYDNB29xmxAub0xEX5IXrJ4UpPQ4REdkImwna//yUg8LqJjyxOA72rPMQEZGV2ETQltQ2481d2Zg/agimD2Odh4iIrMcmgvblrRloN0o8upCr8xARkXXpPmiPF9RgXUoBVl4UiQg/d6XHISIiG6ProO2s85yEv4cT7pnN1XmIiMj6dB20m44X46ChCg/MjWadh4iIFKHboG1uM+K5TWmIGeKJ38azzkNERMrQbdC+v+c0Cqub8OSVrPMQEZFydBm0pbXNeHNnFubGBWLGMH+lxyEiIhumy6D9+7YMtBo78NhCrs5DRETK0l3QniiswZcpBVg5cygi/VnnISIiZekqaLtX5/F1c8I9l7HOQ0REytNV0G45UYwDpytx/9yR8GKdh4iIVEA3QdvcZsRzmzvrPDeyzkNERCqhm6BdvdeA/MrO1Xkc7HWzWUREpHG6SKTSuma8sTMLV8QGYuZw1nmIiEg9dBG0r2zLREu7EX9ZxDoPERGpi+aD9mRRDT5Pzsfy6ZEYyjoPERGpjKaDVkqJp9anwsfVEf93+QilxyEiIvoVTQft1pMl2H+6EvfPjYa3K+s8RESkPpoN2pb2ztV5RgZ64ObJrPMQEZE6aTZoE/YakFfZyDoPERGpmiYTqqyuBf/akYXLYwbj4hEBSo9DRER0XpoM2le+z0RzmxGPsc5DREQqp7mgTS2qxecH87BseiSGBXgoPQ4REVGvNBW0Uko8vSEVXq6OuJd1HiIi0gBNBe33qSVIyqnA/XNGwtuNdR4iIlI/zQRta3sHntuUhhGDPXDLlHClxyEiIjKJZoJ2bZIBhopGPM46DxERaYgmEquivgWv/3AKs6MDcMlI1nmIiEg7Lhi0QogwIcROIUSqEOKkEOJeawx2tle3Z6Kx1Yi/LIqz9lMTERENiIMJ92kH8ICU8pAQwhNAihDieyllqoVnAwBkFNfhk/2ddZ7hg1nnISIibbngEa2U8oyU8lDXr+sApAEIsfRgXc+HpzekwtPFEfddwToPERFpjylHtD8TQkQCmABgfw+3rQKwCgDCw81zVnBLewcCvVwwJy4QPm5OZnlMIiIiaxJSStPuKIQHgN0AnpVSft3bfePj42VycrIZxiMiIlI/IUSKlDK+p9tMOutYCOEI4CsAH18oZImIiOh/TDnrWAB4H0CalPIVy49ERESkH6Yc0c4EsBTAZUKII11fCy08FxERkS5c8GQoKeUeAMIKsxAREemOJq4MRUREpFUMWiIiIgti0BIREVkQg5aIiMiCGLREREQWxKAlIiKyIAYtERGRBTFoiYiILIhBS0REZEEmr97TpwcVogxArhkf0h9AuRkfT0l62Ra9bAfAbVErvWyLXrYD4Lb0JkJKGdDTDRYJWnMTQiSfb/khrdHLtuhlOwBui1rpZVv0sh0At6W/+NExERGRBTFoiYiILEgrQfuu0gOYkV62RS/bAXBb1Eov26KX7QC4Lf2iiZ/REhERaZVWjmiJiIg0STVBK4T4QAhRKoQ4cZ7bhRDin0KILCHEMSHERGvPaCoTtuVSIUSNEOJI19eT1p7RFEKIMCHETiFEqhDipBDi3h7uo4n9YuK2aGW/uAghDgghjnZty996uI+zEOLzrv2yXwgRaf1Je2fidqwQQpSdtU9+p8SsphJC2AshDgshNvRwm+r3SbcLbIfW9olBCHG8a9bkHm63+GuYg7kfcAASAPwbwNrz3L4AwIiur6kA3ur6rxoloPdtAYCfpJSLrTNOv7UDeEBKeUgI4QkgRQjxvZQy9az7aGW/mLItgDb2SwuAy6SU9UIIRwB7hBCbpZT7zrrP7QCqpJTDhRA3AXgRwI1KDNsLU7YDAD6XUt6jwHz9cS+ANABePdymhX3SrbftALS1TwBgtpTyfJ1Zi7+GqeaIVkr5I4DKXu5yNYC1stM+AD5CiCDrTNc3JmyLJkgpz0gpD3X9ug6d33gh59xNE/vFxG3RhK5/6/qu3zp2fZ17ssXVANZ0/XodgMuFEMJKI5rExO3QDCFEKIBFAP5znruofp8AJm2H3lj8NUw1QWuCEAD5Z/2+ABp9oewyvesjs81CiFFKD3MhXR9zTQCw/5ybNLdfetkWQCP7peujvSMASgF8L6U8736RUrYDqAHgZ90pL8yE7QCA67o+0lsnhAiz8oh98RqAhwB0nOd2TewTXHg7AO3sE6Dzzds2IUSKEGJVD7db/DVMS0GrJ4fQebmucQD+BeBbhefplRDCA8BXAO6TUtYqPc9AXGBbNLNfpJRGKeV4AKEApgghRis9U3+YsB3rAURKKccC+B7/OyJUFSHEYgClUsoUpWcZCBO3QxP75CwXSSknovMj4ruFELOsPYCWgrYQwNnvnEK7/kxzpJS13R+ZSSk3AXAUQvgrPFaPun529hWAj6WUX/dwF83slwtti5b2SzcpZTWAnQDmn3PTz/tFCOEAwBtAhXWnM935tkNKWSGlbOn67X8ATLL2bCaaCeAqIYQBwGcALhNCfHTOfbSwTy64HRraJwAAKWVh139LAXwDYMo5d7H4a5iWgvY7AMu6zhCbBqBGSnlG6aH6QwgxpPtnM0KIKejcD2r7hkPXjO8DSJNSvnKeu2liv5iyLRraLwFCCJ+uX7sCmAMg/Zy7fQdgedevrwewQ6qsNG/Kdpzzs7Kr0PmzddWRUj4qpQyVUkYCuAmd/95Lzrmb6veJKduhlX0CAEII966THyGEcAcwF8C5bRCLv4ap5qxjIcSnAC4F4C+EKADwV3SeHAEp5dsANgFYCCALQCOAlcpMemEmbMv1AH4vhGgH0ATgJrV9w3WZCWApgONdP0cDgMcAhAOa2y+mbItW9ksQgDVCCHt0vhn4Qkq5QQjxFIBkKeV36HxT8aEQIgudJ+bdpNy452XKdvxRCHEVOs8arwSwQrFp+0GD+6RHGt4ngQC+6Xr/7ADgEynlFiHEXYD1XsN4ZSgiIiIL0tJHx0RERJrDoCUiIrIgBi0REZEFMWiJiIgsiEFLRERkQQxaIiIiC2LQEhERWRCDloiIyIL+PxPPN4BEam0lAAAAAElFTkSuQmCC\n",
"text/plain": [
"ax.plot(an_array_of_x_coordinates, an_array_of_y_coordinates)
.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hAfNGGvaWsJ8"
},
"source": [
"## 1-2: When ax
is a 1-dimensional array of coordinate systems\n",
"\n",
"if only one of rows or cols is 1 in the function call of plt.subplots()
, 1-dimensional array of Axes objects is returned and assigned to ax
.\n",
"\n",
"\n",
"if rows==1 and cols > 1
, horizontally aligned coordinate systems are returned (sample code 1-2-1)。\n",
"\n",
"fig, ax = plt.subplots(1, 2, ...)
rows > 1 and cols == 0
, vertically aligned coordinate systems are returned (sample code 1-2-2)。\n",
"\n",
"fig, ax = plt.subplots(2, 1, ...)
rows > 1 and cols > 1
in the function call plt.suplots()
, 2-dimensional array of coordinate systems (Axes) and assigned to ax
.\n",
"\n",
"\n",
"fig, ax = plt.subplots(2, 2, ...)
plt.subplots_adjust()
.\n",
"The vertical direction is set by the hspace
parameter, and the horizontal direction is set by the wspace
parameter.\n",
"\n",
"In order to secure a space for displaying characters under the coordinate system, it is necessary to expand the size of the entire display area in the vertical direction.\n",
"Therefore, in the call to plt.suplots(..., figsize=(width, height))
, increase the height
spacified in the argument figsize
parameter.\n",
"\n",
"Also, call plt.suplots_adjust(hspace=height)
to arrange the coordinate systems verticall apart.\n",
"\n",
"The drawing of the character string is performed by the text(x, y, str, ha=..., transform=...)
function for the corrdinate system.\n",
"It is important to set the transform
parameter to transAxes
for each coordinate system.\n",
"The character position is specified by x, y, and ha.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 764
},
"executionInfo": {
"elapsed": 963,
"status": "ok",
"timestamp": 1648474517708,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "2sX27Hp2l3_L",
"outputId": "dc2f4949-ad18-4be2-9bd7-adbc7117751b"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAALrCAYAAACbCShmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iV9f3/8ecnG8KGsEfYBESUJcPNHuIeKFNbW0fV2lorSutXEa3W1daFVQkoOKmDPQRX2HuEzUnYCSuD7OTz++Ngf7ZVDHBOPme8HtfFRUhOzv26MJLzyn3f77ex1iIiIiIiIiJyriJcBxAREREREZHQoIIpIiIiIiIiPqGCKSIiIiIiIj6hgikiIiIiIiI+oYIpIiIiIiIiPqGCKSIiIiIiIj4R5Y8nrVOnjk1MTPTHU4uISJhZvXr1EWttguscwU7fm0VExFdO973ZLwUzMTGRVatW+eOpRUQkzBhj0lxnCAX63iwiIr5yuu/NukRWREREREREfEIFU0RERERERHxCBVNERERERER8QgVTREREREREfEIFU0RERERERHxCBVNERERERER8QgVTREREREREfEIFU0RERERERHziZwumMaatMWbdD35lG2MeqIhwIiIi4cwY08QYs9gYs8UYs9kYc/+p9z9ujNn/g+/Ng11nFRERAYj6uQdYa7cBFwAYYyKB/cC//JxLREREoAT4nbV2jTGmKrDaGLPg1MdetNb+1WE2ERGR/3Gml8j2AXZZa9P8EUZERET+P2vtQWvtmlNv5wCpQCO3qUREJChlZEBhod8Pc6YF8xZguj+CiIj4S05BMb2f+ZKpy/SzMQlexphE4EJg+al33WuM2WCMedsYU9NZMBERCXwnTkC/fnDzzX4/VLkLpjEmBhgGfPQTH7/TGLPKGLMqMzPTV/lERM7Zx6v3sf9EPs/O3crRXP//5E7E14wxVYBPgAestdnAa0BLvLewHASe/4nP0/dmEZFwl58PV18Nqalw771+P9yZnMEcBKyx1h7+sQ9aaydZa7taa7smJCT4Jp2IyDkqK7NMWZpG8zrx5BWV8tLCHa4jiZwRY0w03nL5nrV2BoC19rC1ttRaWwa8CXT/sc/V92YRkTBXUgK33grffANTp0Lfvn4/5JkUzOHo8lgRCTJf78hkz5GTPNC3Nbdd1JRpK9LZfjjHdSyRcjHGGOAtINVa+8IP3t/gBw+7FthU0dlERCTAWQt33w2ffgovv1whl8dCOQumMSYe6AfM8G8cERHfSk7xkFA1lkHnNeCBvm2Ij4lkwqxU17FEyqs3MBK48r9WkjxrjNlojNkAXAH81mlKEREJPH/6E7z5Jjz6KPzmNxV22J9dUwJgrT0J1PZzFhERn/IcOcmS7Zncd2VrYqIiqBUVw319WjNhViqLt2VwRdu6riOKnJa19lvA/MiHZld0FhERCSL/+AdMmAC/+AU8+WSFHvpMp8iKiASNKUvTiDSG2y5q+u/3jeqZSPM68Tw1K5Xi0jKH6URERET84MMP4b77vIN9XnsNzI/9nNJ/VDBFJCSdLCzho1V7GdyxAXWrxf37/TFREYwbnMTOjFymLU93mFBERETExxYuhBEj4OKLYfp0iCrXBas+pYIpIiFpxtr95BSWMLpX4v98rG9SXXq1rM2LC7eTlVdc8eFEREREfG31arj2WmjXDj7/HCpVchJDBVNEQo61likpHjo2qk7npjX+5+PGGMYPbU92fjF/+1JrS0RERCTI7dgBgwZB7dowdy7U+N/XPxVFBVNEQk7KrqPsyMhldK9EzE/cd5DUoBo3d2tCcoqH3Zm5FZxQRERExEcOHoQBA7xrSebPh4YNncZRwRSRkDM5xUOt+BiGnt/gtI97sF9b4qIjmTh7awUlExEREfGhrCzvmcuMDJg9G9q0cZ1IBVNEQsveY3ksSj3M8O5NiIuOPO1jE6rGcs8VrViYepjvdh6poIQiIiIiPlBQ4J0Uu2ULzJgB3bq5TgSoYIpIiHl3WRrGGEb0aFaux4/tnUjjmpV4cuYWSsusn9OJiIiI+EBpKdx2G3z1FSQnQ//+rhP9mwqmiISM/KJS3l+5lwEd6tGgevkmp8VFR/LIoCS2Hsrhw1V7/ZxQRERE5BxZC3ff7T1r+dJLMHy460T/QQVTRELGZ+v2k5VfzOieiWf0eYM71qdbYk2en7+NnAKtLREREZEA9vjjMGkSPPII3H+/6zT/QwVTREKCtZbJKR7a1a9K9+a1zuhzv19bciS3iFcW7/JTQhEREZFz9Oqr8MQTcPvt8NRTrtP8KBVMEQkJK/YcY+uhHMacZjXJ6ZzfuAbXdW7E29/uYe+xPD8kFBERETkHH30E994Lw4bBG2/AWbzeqQgqmCISEpKXeqheKZqrL2h01s/xhwHtiIwwPD0n1XfBRERERM7Vl1/CiBHQuze8/z5ERblO9JNUMEUk6B04kc+8zYe5pVsTKsWcfjXJ6dSvHsevL2vJ7I2HWLHnmA8TioiIiJylNWvgmmu8Oy4//xwqlW+QoSsqmCIS9N5bnoa1ttyrSU7nzktb0KB6HE/O3EKZ1paIiIiISzt3wqBBULMmzJ3r/T3AqWCKSFArKC5l+oq99EmqR5Nalc/5+SrFRPLwwHZs3J/FjLX7fZBQRERE5CwcOgQDBnh3Xs6bB43O/jagiqSCKSJBbeaGgxw7WcSYXok+e85hnRrSqUkNnpu3lbyiEp89r4iIiEi5ZGXBwIHekjl7NrRr5zpRualgikjQstaSnOKhdd0q9GpZ22fPGxFh+NPQ9hzOLuT1r3b77HlFREREflZBgfeey82bYcYM6N7ddaIzooIpIkFrTfoJNu7PYtRZriY5nS7NanJVp4ZM+noXB07k+/S5RURERH5Uaal3WuySJTB5svcS2SCjgikiQSs5xUPVuCiuu9A/9yQ8PLAt1sKzc7f65flFRERE/s1a757LTz6BF1+E225zneisqGCKSFDKyC5g9saD3NilCfGx/tkF1bhmZX55SQs+XXeAtenH/XIMEREREQCeeAJefx0efhgeeMB1mrOmgikiQem95emUWsuonue+muR07rq8JQlVY3ly5has1doSERER8YPXX4fHH4exY+Hpp12nOScqmCISdIpKypi2Ip3L2ySQWCfer8eKj43iof5tWZN+gi82HPTrsURERCQMffwx3H03DB0KkyaBj+dKVDQVTBEJOnM2HSQzp5DRPlxNcjrXd2lMh4bVeGZ2KgXFpRVyTBEREQkDixd777Xs2RM++ACi/HPbT0VSwRSRoDM5xUPzOvFc2jqhQo4XGWEYP7Q9B7IK+Oc3WlsiIiIiPrB2LVx9NbRuDV98AZUru07kEyqYIhJUNuw7wdr0E4zq2YyIiIq7hKRHi9oM6FCPV5fsIiO7oMKOKyIiIiFo1y4YNAhq1IC5c6FWLdeJfEYFU0SCyuQUD/ExkdzQpXGFH3vc4CSKS8t4bt62Cj+2iIiIhIjDh737LYuLYf58aFzxr2n8SQVTRILGkdxCZq4/yPVdGlM1LrrCj9+sdjxjezfn4zX72LQ/q8KPLyIiIkEuO9t75vLgQZg9G9q1c53I51QwRSRovL8inaLSMkb1THSW4d4rW1GzcozWloiIiMiZKSyEa6+FjRvhk0/gootcJ/ILFUwRCQrFpWVMXZbGJa3r0KpuFWc5qsVF82C/Nizfc4x5mw85yyEiIiJBpLQURoyAL7+Ed96BgQNdJ/IbFUwRCQrzNh/icHYhYypoNcnp3NKtCW3qVWHi7K0UlmhtiYiIiJyGtXDffd59l88/7y2aIUwFU0SCQnKKh6a1KnN527quoxAVGcH4oe1JP5ZHcorHdRwREREJZE8+Ca++Cg89BA8+6DqN36lgikjA23wgi5We44zq2YzIClxNcjqXtE7gynZ1+fuinRzJLXQdR0RERALRG2/An/8Mo0fDX/7iOk2FUMEUkYCXnOKhUnQkN3Zt4jrKfxg3OIn84lJeXLDddRQREREJNDNmwN13w5Ah8OabYALjh+T+poIpIgHt+MkiPlt3gGs7N6J6pYpfTXI6repWYUSPZkxfkc62Qzmu44iIiEigWLIEhg/3Tor98EOIDqzXMP6kgikiAe39lXspLCljtMPVJKfzQN/WVI2LZsIsrS0RERERYN06uPpqaNkSZs6EypVdJ6pQKpgiErBKSst4d1kaPVvUpm39qq7j/KgalWO4v09rvtlxhMXbMlzHEREREZd27/auIKlWDebNg1q1XCeqcCqYIhKwFqZmsP9EPqMDYDXJ6Yzs2YwWCfFMmJVKcWmZ6zgiIiLiwuHD0L8/FBfD/PnQJLBmR1QUFUwRCVjJKR4a1ahE3yT3q0lOJzoygkcHJ7E78yTvLktzHUdEREQqWnY2DB4MBw54L4tNSnKdyBkVTBEJSNsO5bB091FG9GhGVGTg/1N1Zbu6XNyqDi8t3MGJvCLXcURERKSiFBbCddfB+vXw8cfQs6frRE4F/qs2EQlLyUs9xEZFcEu34Li8xBjDY0OTyCko5qWFO1zHERERkYpQWgqjRsGiRfD2296zmGFOBVNEAk5WXjH/WrOfqy9oSM34GNdxyq1d/Wrc0r0p7y5LY1dmrus4IiIi4k/Wwv33e9eQPPect2iKCqaIBJ6PVu8lv7g04If7/JgH+7WhUnQkE2eluo4iIiIi/vTUU/DKK/D733t/CaCCKSIBprTMMmVpGt0Sa9KhYXXXcc5YnSqx3HtlKxZtzeCbHZmu44iIiIg/TJoE48fDyJHwl7+4ThNQVDBFJKAs2ZZB+rG8oDx7+b0xvRNpWqsyE2amUqK1JSIiIqHlX/+Cu+6CQYPgrbcgQpXqh8r1t2GMqWGM+dgYs9UYk2qMCe/RSCLiN5NTPNSvFseADvVdRzlrsVGRPDKoHdsO5/DBqr2u44iIiIivfPUVDB8O3bvDRx9BdLTrRAGnvHX7ZWCutbYd0AnQzUUi4nO7MnP5ZscRbruoKdFBsJrkdAaeV5/uzWvxwvztZBcUu44jIiIi52r9ehg2DJo39+66jI93nSgg/ewrOGNMdeBS4C0Aa22RtfaEv4OJSPiZkuIhJjKC4Rc1dR3lnBlj+NPQ9hzLK+KVL3e6jiNByhjTxBiz2BizxRiz2Rhz/6n31zLGLDDG7Dj1e03XWUVEQtqePTBwIFSrBvPmQe3arhMFrPKcImgOZALvGGPWGmP+aYxRXRcRn8opKObj1fsYen4D6lSJdR3HJ85rVJ0bOjfmne88pB096TqOBKcS4HfW2vZAD+AeY0x74I/AImtta2DRqT+LiIg/ZGRA//5QWOgtl02D/wfh/lSeghkFdAZes9ZeCJzkR76RGWPuNMasMsasyszU5EQROTOfrN7HyaLgXE1yOg8NaEtUpOHp2VtdR5EgZK09aK1dc+rtHLy3qDQCrgaSTz0sGbjGTUIRkRCXkwODB8P+/TBrFrRv7zpRwCtPwdwH7LPWLj/154/xFs7/YK2dZK3taq3tmpCQ4MuMIhLiyk6tJrmgSQ06NanhOo5P1a0Wx12XtWTu5kMs233UdRwJYsaYROBCYDlQz1p78NSHDgH1HMUSEQldhYVw3XWwbp13oE9PzTktj58tmNbaQ8BeY0zbU+/qA2zxayoRCSvf7DzC7iMnGRNiZy+/98tLW9CwehxPztxCaZl1HUeCkDGmCvAJ8IC1NvuHH7PWWuBHv7B0dZGIyFkqK4PRo2HhQu8qkiFDXCcKGuUd0/gb4D1jzAbgAmCi/yKJSLhJTvFQp0osgzs2cB3FL+KiI3l4UDs2H8jmkzX7XMeRIGOMicZbLt+z1s449e7DxpgGpz7eAMj4sc/V1UUiImfBWnjgAfjgA/jLX7xFU8qtXAXTWrvu1Deo862111hrj/s7mIiEh7SjJ1m8LYNbL2pKTFRwryY5nWGdGnJh0xo8N28bJwtLXMeRIGGMMXinuKdaa1/4wYc+B75/xTMa+Kyis4mIhKyJE+Hvf4cHH4SHHnKdJuiE7qs5EQkKU5amEWkMt4XAapLTMcYwfmh7MnMKeW3JLtdxJHj0BkYCVxpj1p36NRh4BuhnjNkB9D31ZxEROVf//Cc89hiMGAHPPQfGuE4UdKJcBxCR8HWysIQPV+1lUMcG1KsW5zqO33VuWpOrL2jIm9/sZvhFTWlUo5LrSBLgrLXfAj/16qZPRWYREQl5n34Kv/qVd9/l229DhM7FnQ39rYmIM/9au5+cghLG9GrmOkqF+cPAdgD8ZY7WloiIiASMr7+GW26Brl3h448hOtp1oqClgikiTlhrmbLUw3mNqtG5aU3XcSpMoxqV+NWlLfh8/QFWp+l2dhEREec2bIBhwyAx0bvrMj7edaKgpoIpIk4s3XWU7YdzGd0zERNm9zf86rKW1K0ay5Mzt1CmtSUiIiLueDzeS2KrVIH586FOHdeJgp4Kpog4MTnFQ634GK7q1NB1lAoXHxvFQwPasm7vCb7YcMB1HBERkfCUmQkDBkB+PsydC01De+BgRVHBFJEKt+94HgtTD3NLtybERUe6juPE9Z0bc16jajwzZyv5RaWu44iIiISXnBwYPBjS02HmTDjvPNeJQoYKpohUuKnL0jDGMKJH+Az3+W8REYY/De3AwawC3vxmt+s4IiIi4aOoCK6/HtauhQ8/hN69XScKKSqYIlKhCopL+WDlXvq3r0fDMF/T0b15LQZ3rM9rS3ZxOLvAdRwREZHQV1YGY8bAggXw5ptw1VWuE4UcFUwRqVCfrdvPibxiRvdKdB0lIPxxYBKlZZZn525zHUVERCS0WQu//S1Mnw7PPANjx7pOFJJUMEWkwlhrmZySRrv6VbmoeS3XcQJC09qVGXtxIp+s2cfGfVmu44iIiISuZ56Bv/0NHngA/vAH12lClgqmiFSYlZ7jpB7MZnSv8FtNcjr3XtGKOlVieGLmZqzV2hIRERGfe+stGDcObr0Vnn8e9DrEb1QwRaTCJKd4qF4pmmsuaOQ6SkCpGhfNg/3astJznDmbDrmOIyIiElo+/xzuvNO7kuSddyBCFcif9LcrIhXiYFY+czcf4uZuTagUE56rSU7n5m5NaFe/Kk/PSaWgWGtLREREfOKbb+Dmm6FLF/j4Y4iJcZ0o5KlgikiFeG9ZOmXWMjKMV5OcTmSEYfzQ9uw9ls8733lcxxEREQl+GzfCsGHQtCnMmgVVqrhOFBZUMEXE7wqKS5m+Ip0+7erRpFZl13ECVu9WdeibVJdXFu8kM6fQdRwREZHglZYGAwdC5cowfz4kJLhOFDZUMEXE72ZtOMjRk0WM0WqSnzVucBIFxaW8sGC76ygiIiLB6cgR6N8f8vJg3jxopqunKpIKpoj4lbWW5KUeWtWtQu9WtV3HCXgtEqowqmciH6xMJ/Vgtus4IiIiwSU3FwYPhvR0+OILOO8814nCjgqmiPjV2r0n2LAvi9E9m2k1STnd36c11SpFM2HWFq0tERERKa+iIrj+eli9Gj74AC6+2HWisKSCKSJ+lZzioWpsFNd1buw6StCoXjmaB/q05rudR1mUmuE6joiISOArK4OxY733W06a5B3uI06oYIqI32TkFDB740Fu6NqY+Ngo13GCym09mtEyIZ6nZqdSVFLmOo6IiEjgshZ+9zuYNg0mToQ77nCdKKypYIqI30xbnk5xqWVUz0TXUYJOdGQEjw1pz54jJ5m6LM11HBERkcD17LPw0ktw333wxz+6ThP2VDBFxC+KSsp4b3k6l7dNoHmdeNdxgtLlbRO4pHUdXl64neMni1zHERERCTzvvOMtlcOHw4svguY9OKeCKSJ+MWfTQTJzChmt1SRnzRjD+KHtyS0s4aWFWlsiIiLyH774An75S+jXDyZPhghVm0Cg/woi4hfJKR6a14nnstZabHwu2tSryq0XNeXd5enszMhxHUdERCQwfPcd3HQTXHghfPIJxMS4TiSnqGCKiM9t2HeCNeknGNmjGRERulTlXP22bxsqx0Ty1KxU11FERETc27QJhg6FJk1g9myoWtV1IvkBFUwR8bnJKR4qx0RyQ1etJvGF2lViue/K1izelslX2zNdxxEREXEnLQ0GDIBKlbwrSRJ0pVSgUcEUEZ86klvIzPUHub5zY6rFRbuOEzJG9WpGs9qVmTBzCyWlWlsiIiJh6MgRb7k8eRLmzoXERNeJ5EeoYIqIT72/Ip2i0jJG92rmOkpIiY2KZNzgJHZk5DJ9RbrrOCIiIhXr5EkYMgQ8Hvj8czj/fNeJ5CeoYIqIzxSXlvHusnQublWHVnV1P4Sv9W9fjx4tavHCgu1k5Re7jiMiIlIxiovhhhtg1Sp4/3249FLXieQ0VDBFxGfmbz7MoewCrSbxk+/XlpzIL+YfX+5wHUdERMT/ysrg9tu9l8S+8QZcc43rRPIzVDBFxGeSUzw0rlmJK9vVdR0lZHVoWJ2bujRhcoqHPUdOuo4jIiLiP9bCQw/Bu+/ChAnwi1+4TiTloIIpIj6x5UA2KzzHGNWzGZFaTeJXvxvQhpjICJ6erbUlIiISwp57Dl54AX7zGxg3znUaKScVTBHxieQUD3HREdzUtYnrKCGvbtU47r6iFfO3HCZl1xHXcURERHxv8mR4+GG4+WZ46SUw+uF1sFDBFJFzdvxkEZ+u28+1FzaiRuUY13HCwh0XN6dRjUo8OTOV0jLrOo6IiIjvzJzpvRy2b19IToYIVZZgov9aInLOPli1l8KSMg33qUBx0ZH8cVA7Ug9m8/Hqva7jiIiI+EZKCtx0E1xwAcyYAbGxrhPJGVLBFJFzUlpmmbo0jR4tatGufjXXccLK0PMb0KVZTZ6bt53cwhLXcURERM7N5s0wdCg0agSzZ0NVrTwLRiqYInJOFqYeZv+JfMbo7GWF+35tyZHcQl5dvNN1HBERkbOXng4DBnjPWM6fD3U1kT5YqWCKyDlJTvHQsHocfZPquY4Sli5oUoNrL2zEP7/dw95jea7jiIiInLmjR73lMifHu++yeXPXieQcqGCKyFnbfjiHlF1HGdGzGVGR+ufElT8MbEuEgb/M3eo6ioiIyJk5eRKGDIE9e+Dzz6FTJ9eJ5BzpFaGInLXkFA8xURHc0q2p6yhhrUH1Svzq0pbM3HCQVZ5jruOIiIiUT3Ex3HgjrFwJ06fDZZe5TiQ+oIIpImclK7+YGWv2c3WnhtSK12oS1351WQvqVYvlyZlbKNPaEhERCXSlpXD77TBnDrz2Glx7retE4iMqmCJyVj5atZf84lKtJgkQlWOieHhgO9bvy+LTdftdxxEREflpOTlw9dXw7rvw5JNw552uE4kPqWCKyBkrK7NMXZZG12Y1Oa9Rdddx5JRrLmjE+Y2r8+zcbeQVaW2JiIgEoH374JJLvMN8Xn0VHnvMdSLxMRVMETljS7ZnkHY0T2cvA0xEhHdtyaHsAiZ9vdt1HBERkf+0Zg1cdBHs3g0zZ8Jdd7lOJH5QroJpjPEYYzYaY9YZY1b5O5SIBLbJKWnUqxbLwPPqu44i/6VbYi2GnN+A17/axcGsfNdxREREvL74wnvmMjISvvsOBg50nUj85EzOYF5hrb3AWtvVb2lEJODtyszl6+2Z3HZRM6K1miQg/XFgO8osPDd3m+soIiIS7qyFl1/23nPZvj0sXw4dO7pOJX6kV4cickamLk0jJjKC4d21miRQNalVmTsubs6MtftZv/eE6zgiIhKuSkrgN7+BBx6Aa66BJUugQQPXqcTPylswLTDfGLPaGKMxTyFoddoxHv98MwXFpa6jSADLLSzh49X7GHJ+AxKqxrqOI6dx9+UtqVPFu7bEWq0tERGRCpaTA8OGwSuvwO9/Dx9/DPHxrlNJBShvwbzYWtsZGATcY4y59L8fYIy50xizyhizKjMz06chxb8KS0p58MP1TE7x8PAnG/RiVH7SJ6v3kVtYouE+QaBqXDS/79+GVWnHmbXxoOs4IiISTvbuhYsvhvnz4fXX4bnnIEIXToaLcv2XttbuP/V7BvAvoPuPPGaStbartbZrQkKCb1OKX01JSSPtaB4DO9Tns3UHeHnRDteRJACVlVmSl3ro1KQGFzSp4TqOlMONXZuQ1KAaT8/eqqsTgpQx5m1jTIYxZtMP3ve4MWb/qcF764wxg11mFBH5D6tXeyfF7tkDs2bBr37lOpFUsJ8tmMaYeGNM1e/fBvoDm07/WRIsjuYW8rdFO7iibQKvjejM9Z0b89LCHXy6Vova5T99u/MIuzNPMqZXM9dRpJwiIwzjhyax/0Q+b327x3UcOTuTgR8btfjiqcF7F1hrZ1dwJhGRH/fZZ3DppRAdDSkpMGCA60TiQHnOYNYDvjXGrAdWALOstXP9G0sqyosLt5NXXMqjQ5IwxvD0dR25qHkt/vDxBlZ5jrmOJwEkOcVDnSoxDO6om/ODSa+WdejXvh6vLt5JRk6B6zhyhqy1XwP6x1hEApu18OKLcO210KGDd1Lseee5TiWO/GzBtNbuttZ2OvWrg7X2qYoIJv637VAO05anM7JHM1rVrQpATFQEr4/oQqOalbhz6mrSjp50nFICQfrRPL7clsGt3ZsSGxXpOo6coXGDkygqLeOF+dtdRxHfudcYs+HUJbQ1XYcRkTBWUgL33AMPPugtmEuWQH3tyQ5nuts2TFlrmTBrC1Xjorm/T+v/+FjN+BjeHtONMmu5ffJKsvKKHaWUQDFlqYdIY7ithy6PDUbN68QzumciH6zay+YDWa7jyLl7DWgJXAAcBJ7/qQdqAJ+I+FV2Nlx1Fbz2Gjz0EHz0EVSu7DqVOKaCGaaWbMvkmx1HuK9Pa2rGx/zPx5vXief1EV1IP5bHXe+tpri0zEFKCQR5RSV8uGovA8+rT71qca7jyFn6TZ/W1KgUzYSZqZoUHeSstYettaXW2jLgTX5k8N4PHqsBfCLiH+np3kmxCxbApEnw7LOaFCuACmZYKi4t48lZW2hRJ56Rpzkj1aNFbZ6+7nxSdh3lsX9t0ovSMPWvtfvJLihhjFaTBLXqlaJ5sF8blu4+yoIth13HkXNgjPnhjdDXosF7IlLRVq3yTopNS4M5c+CXv3SdSAKICmYYem9ZGrszTzJucBIxUaf/ErihS2PuvaIVH6zay6Svd1jzQVAAACAASURBVFdQQgkU1lqSUzx0aFiNLs10m1ewG969Ka3rVmHi7FSKSnRVQjAwxkwHlgJtjTH7jDF3AM8aYzYaYzYAVwC/dRpSRMLLp596J8XGxnonxfbr5zqRBBgVzDBzIq+Ilxbt4OJWdeiTVLdcn/NgvzYMOb8Bz8zdytxNWtgeTpbuPsr2w7mM7pWIMcZ1HDlHUZERPDokCc/RPKYs9biOI+VgrR1urW1grY221ja21r5lrR1pre1orT3fWjvMWqt/mEXE/6yF55+H666Djh29k2I7dHCdSgKQCmaYeXnRDrLzi3lsaFK5C0NEhOH5GzvRqXENHvhgHRv2nfBzSgkUySkealaOZlinhq6jiI9c3rYul7dN4OVFOziaW+g6joiIBIOSErjrLvj9770Fc/FiqFfPdSoJUCqYYWRXZi5Tl6Zxc7emtKtf7Yw+Ny46kjdHdaV2fCx3JK/iwIl8P6WUQLHveB4Lthzmlu5NiYvWapJQ8tiQJPKKSnlp4Q7XUUREJNBlZ8PQofDGG/Dww/Dhh5oUK6elghlGnp6dSlx0JL/r3+asPj+haizvjO1GQVEpt09eSW5hiY8TSiB5d1k6ACO0miTktKpbldsuasq0FelsP5zjOo6IiASqtDTo3RsWLYI334RnntGkWPlZ+goJE9/uOMLC1AzuvbIVdarEnvXztKlXlX/c1pkdGbn8ZtoaSrS+JCQVFJfy/sp0+revT6MalVzHET94oG8b4mMimTAr1XUUEREJRCtXeifF7t3rnRT7i1+4TiRBQgUzDJSWWSbM2kKTWpUY2zvxnJ/vsjYJPD6sA4u3ZerFaYj6fN0BTuQVM1qrSUJWrfgY7uvTmq+3Z7J4W4brOCIiEkhmzIDLLoNKlbyTYvv2dZ1IgogKZhj4YOVeth7KYdygJGKjfHMv3cgezbjj4uZMTvGQnOLxyXNKYLDWMjnFQ9t6VenRopbrOOJHo3om0rxOPE/NSqVYVyOIiIi18Ne/wg03QKdO3kmx7du7TiVBRgUzxGUXFPP8/G10b16LgefV9+lzjxucRN+kevzfF5tZvFVnQELFqrTjbDmYrdUkYSAmKoJxg5PYmZHLtOXpruOIiIhLxcXw61/DQw/BjTfCl19C3fKttBP5IRXMEPfK4p0cyyti/JD2Pi8LkRGGl2+5gKQG1bh32hpSD2b79PnFjckpHqrFRXHNhVpNEg76JtWlV8vavLhwO1l5xa7jiIiIC1lZMGQITJoE48bB9Oney2NFzoIKZghLP5rHO996uL5zYzo2ru6XY8THRvHW6G5UiYvijskrycgu8MtxpGIcyipg7qZD3NytCZVjolzHkQpgjOGxIe3Jyi/mb19qbYmISNjxeLyTYhcvhrffhqee0qRYOSf66glhT89JJSrS8NCAtn49Tv3qcbw1uhvH84r5xZRV5BeV+vV44j/vLU+jzFpG9kh0HUUqUPuG1bilWxOSUzzszsx1HUdERCrKihXeSbH798O8eTB2rOtEEgJUMEPU8t1HmbPpEL++rCX1qsX5/XjnNarO34ZfyMb9Wfz2g3WUlVm/H1N8q7CklOkr0unTri5Na2uBcrh5sF9b4qIjmTh7q+soIiJSET75xDspNj4eli6FK690nUhChApmCCorszw5awsNq8fxy0taVNhx+7Wvx6ODk5i7+RDPzttWYccV35i14SBHcou0miRMJVSN5Z4rWrEw9TDf7TziOo6IiPiLtfDss95JsRde6J0U266d61QSQlQwQ9Ana/axaX82Dw9qR6UY36wlKa87Lm7ObRc15fWvdvHBSk2lDCbJKR5aJsRzcas6rqOII2N7J9K4ZiWenLmFUl2FICISeoqL4c474eGH4eabvZNiExJcp5IQo4IZYk4WlvDcvG1c2LQGwzpV/BRQYwyPD+vAJa3r8Oi/NpGiMyFBYW36cdbvy9JqkjAXFx3JI4OS2Hoohw9X7XUdR0REfOnECRg8GP75T3j0UZg2DeL8fxuVhB8VzBDz+le7yMgpZPxQ368lKa/oyAheua0zzevE8+t3V7MzQ0NDAl1yiocqsVFc17mx6yji2OCO9emWWJPn528jp0BrS0REQsKePd5JsV99Be+8AxMmaFKs+I2+skLI/hP5TPp6N8M6NaRz05pOs1SLi+btMd2IiYrg9skrOXayyGke+WkZOQXM2niQG7o0pkqsVpOEO2MM44e250huEa8s3uU6joiInKvly6FHDzhwAObPhzFjXCeSEKeCGUKeneud/vjwoMC4UbtJrcpMGtWVQ9kF3DllFYUlWl8SiKYtT6e41DKqZzPXUSRAnN+4Btd1bsTb3+5h77E813FERORsffQRXH45VKkCy5Z53xbxMxXMELEm/TifrTvAnZe2oFGNSq7j/FvnpjV5/sZOrEo7zsMfb8BaDQ4JJEUlZby3PJ3L2iTQIqGK6zgSQP4woB2REYan56S6jiIiImfKWnj6abjpJujc2Vsu2/p3L7rI91QwQ4C1lidnbqFu1Vh+fVlL13H+x1WdGvL7/m34dN0B/rZop+s48gNzNh0kM6eQMVpNIv+lfvU4fn1ZS2ZvPMSKPcdcxxERkfIqKoJf/ALGjYPhw2HRIk2KlQqlghkCPl9/gLXpJ3hoQFviA/QeunuuaMV1nRvx4sLtfLZuv+s4ckpyiofE2pW5rI2+8cj/uvPSFjSoHseTM7dQprUlIiKB7/hxGDQI3n4bxo+H997TpFipcCqYQS6/qJS/zNnKeY2qcX0ATwA1xvD0dR3p3rwWD320gVUenRFxbeO+LNakn2Bkz0QiIrSaRP5XpZhIHh7Yjo37s5ixVj8YEhEJaLt3Q69e8M03kJwMTzwBWj0mDqhgBrl/frObA1kFjB/SPuBLQmxUJG+M6ELDGnHcOXU16Uc1PMSlySkeKsdEcmPXwP3BhLg3rFNDOjWpwXPztpJXVOI6joiI/JilS72TYg8fhgULYNQo14kkjKlgBrHD2QW8umQXg86rz0UtaruOUy4142N4e0w3SsssYyevICtfe/ZcOJpbyBcbDnBd50ZUi4t2HUcCWESE4U9DkzicXcjrX+12HUdERP7bBx/AFVdAtWreonnZZa4TSZhTwQxiz83bRmmZ5ZFBSa6jnJEWCVV4Y2QX0o/lcfd7qykuLXMdKey8v3IvRSVljO6Z6DqKBIEuzWpxVaeGTPp6FwdO5LuOIyIi4J0UO3Ei3HILdOumSbESMFQwg9TGfVl8smYfY3sn0rR2ZddxzliPFrWZeG1Hvtt5lPGfbtL6kgpUUlrGu8vS6N2qNq3rVXUdR4LEwwPbYu3/37crIiIOFRXB7bfDo4/CrbfCwoVQp47rVCKACmZQ+n4tSa3KMdxzZSvXcc7ajV2bcM8VLXl/5V7e/EaX3lWU+VsOczCrQGcv5Yw0rlmZX17Sgk/XHWBt+nHXcUREwtfx4zBwIEyeDH/+M7z7LsTGuk4l8m8qmEFo7qZDrPAc48H+bYL+/rnf9WvLkI4NeHrOVuZuOuQ6TliYnOKhcc1K9Emq5zqKBJm7Lm9JQtVYnpy5RVcdiIi4sGsX9OwJ334LU6bA449rUqwEHBXMIFNYUsrEOam0rVeVm7s2cR3nnEVEGJ6/qROdGtfggQ/WsnFflutIIS31YDYr9hxjZI9mRAb41GEJPPGxUTzUvy1r0k/wxYaDruOIiISX777zTorNzPReEjtypOtEIj9KBTPIvPOdh73H8nlsaBJRkaHxny8uOpI3R3WldnwsdySv1BARP0pO8RAXHcHN3YL/hxPixvVdGtOhYTWemZ1KQXGp6zgiIuFh+nTo0wdq1PAO87n0UteJRH5SaDSUMHEkt5B/fLmTPu3qcknrBNdxfCqhaizvjO1GflEpdySvIrdQ+/Z87UReEZ+u2881FzSiRuUY13EkSEVGGMYPbc+BrAL+qXunRUT8y1qYMME7yKd7d2+5bN3adSqR01LBDCIvLNhOQXEp44YE11qS8mpTryr/uK0z2w/ncN/0tZSW6R4vX/pg5V4KissY3SvRdRQJcj1a1GZAh3q8umQXGdkFruOIiISmoiIYOxbGj4cRI2DBAqgdHHvPJbypYAaJrYeyeX9FOiN7NqNlQhXXcfzmsjYJPD6sA19uzWDCrC2u44SM0jLL1GVpdG9ei6QG1VzHkRAwbnASxaVlPDdvm+soIiKh59gx6N8fkpO9g3ymTNGkWAkaKphBwFrLhJmpVI2L5v4+oX9ZxMgezbjj4ua8852HKUs9ruOEhEWph9l3PJ8xOnspPtKsdjxjezfn4zX72LRfw7lERHxm507vpNilS70rSP78Z02KlaCighkEvtyawbc7j/Dbvq3D5t65cYOT6JtUl8c/38ySbRmu4wS95KUeGlSPo397rSYR37n3ylbUrByjtSUiIr7y7bfeSbFHj3onxd52m+tEImdMBTPAFZWU8dSsVFomxHNbj2au41SYyAjDy7dcSLv61bh32lq2Hsp2HSlo7Ticw3c7jzKiR7OQmTwsgaFaXDQP9mvD8j3HmLdZe2xFRM7JtGneSbG1anmH+VxyietEImdFrzYD3LvL0th95CSPDkkiOszKQXxsFG+N6Up8bCS3v7OSjBwNEzkbyUs9xERFcItWk4gf3NKtCW3qVWHi7K0UlmhtiYjIGbMWnnjCe7ayRw/vpbGtWrlOJXLWwquxBJnjJ4t4aeF2Lmldhyva1nUdx4kG1Svx1uhuHM8r5pfJq8gv0gvYM5FdUMyMNfu56vyG1K6i4QDie1GRETw2pD3px/JITvG4jiMiElwKC2H0aO99liNHwvz5mhQrQU8FM4C9vGgHuYUlPDakPSaMb+4+r1F1Xr7lAjbsz+LBD9dRpvUl5fbRqn3kFZVquI/41aVtEriyXV3+vmgnR3ILXccREQkOR496J8VOneo9g5mcrEmxEhJUMAPUzowcpi5LY3j3prStX9V1HOf6d6jPo4OTmLPpEM/N11qE8igrs0xd6qFLs5p0bFzddRwJceMGJ5FfXMqLC7a7jiIiEvh27PBOil22zHvv5fjxmhQrIUMFM0A9NSuVytGRPNivjesoAeOOi5tz60VNeW3JLj5cudd1nID31fZMPEfzGK2zl1IBWtWtwogezZi+Ip1th3JcxxERCVzffOO91/LYMfjySxg+3HUiEZ8qd8E0xkQaY9YaY2b6M5DA19szWbwtk9/0aaX75n7AGMP/DevAJa3rMO5fG0nZdcR1pIA2OcVD3aqxDDqvvusoEibu79OaqnHRTJiltSUiIj/q3Xehb1+oU8d79rJ3b9eJRHzuTM5g3g+k+iuIeJWUljFh1haa1a6sM08/Ijoygn/c2pnmdeL59dTV7MrMdR0pIO3OzOWr7ZncdlGzsJs+LO7UjI/h/j6t+WbHERZrf62IyP9nLTz+uHeQT69emhQrIa1crzyNMY2BIcA//RtHpq/cy/bDuTwyKInYqEjXcQJS9UrRvD2mG9GREdw+eSXHTha5jhRwpixNIzrSMPwirSaRijWyZzNaJMQzYVYqxaVlruOIiLhXWAijRsH//Z93Yuy8ed5dlyIhqrynNl4C/gDo1YIfZeUX8+KC7VzUvBYDOtRzHSegNalVmUmjunIwq4BfTV2l/Xs/kFtYwser9zGkYwPqVo1zHUfCTHRkBI8OTmJ35kneXZbmOo6IiFtHj0K/ft5LYydMgHfegZgY16lE/OpnC6YxZiiQYa1d/TOPu9MYs8oYsyozM9NnAcPJK4t3cjyviPFDw3stSXl1aVaT52/sxErPcf74yUbd83XKjDX7yC0s0SXW4syV7epycas6rN97wnUUERF3tm/3DvNZsQKmT4dHH9WkWAkLUeV4TG9gmDFmMBAHVDPGvGutHfHDB1lrJwGTALp27apX+mfIc+Qk73y3hxu7NOa8RlopUV5XdWqI58hJnl+wneZ14rmvT2vXkZyy1pKc4qFT4+pc2LSm6zgSpowxTBrVhcox5fkWIyISgr7+Gq69FiIivJNie/VynUikwvzsGUxr7SPW2sbW2kTgFuDL/y6Xcu6enpNKdGQEv+/f1nWUoHPvla247sJGvLBgO5+t2+86jlPf7jzCrsyTOnspzqlcikjYmjrVOyk2IcE7KVblUsKMxksGgKW7jjJv82HuuaIVdavpnrkzZYzh6es70j2xFg99vIHVacdcR3ImOcVDnSoxDDm/gesoIuIDxpi3jTEZxphNP3hfLWPMAmPMjlO/63IFkUBgLfz5z96BPhdf7J0U27Kl61QiFe6MCqa1dom1dqi/woSj0jLLkzO30KhGJe64uLnrOEErNiqSN0Z2oWH1OO6cspr0o3muI1W49KN5LNqawfDuTTWBWCR0TAYG/tf7/ggssta2Bhad+rOIuFRQACNGwBNPwNixMHcu1NTPfiQ86QymY5+s3seWg9k8PKgdcdEqBeeiZnwMb4/pRkmZ5fbklWTlF7uOVKGmLvMQaQy3XdTMdRQR8RFr7dfAf1+WcTWQfOrtZOCaCg0lIv/pyBHvJbHTpsHEifDWW5oUK2FNBdOh3MISnp23jc5Na3CVLmn0iRYJVXhjZBfSjp7knvfWhM0evryiEj5YuZcB59WnfnVdZi0S4upZaw+eevsQoL1WIq5s2+adFLtqFbz/PjzyiCbFSthTwXTotSU7OZJbyJ+u6qC1JD7Uo0VtJl7bkW93HuFPn20Ki/Uln649QHZBCWM03EckrFjvP3A/+Y+cVoiJ+NGSJdCzJ2Rnw+LFcPPNrhOJBAQVTEf2Hc/jzW/2cM0FDbmgSQ3XcULOjV2bcM8VLZm+Yi///GaP6zh+9f1qkvYNqtG1me73EAkDh40xDQBO/Z7xUw+01k6y1na11nZNSEiosIAiIW/KFOjfH+rXh+XLvUVTRAAVTGeembOVCAN/GNjOdZSQ9bt+bRnSsQET56Qyb/Mh13H8ZtnuY2w7nMOYXok6Ey4SHj4HRp96ezTwmcMsIuHFWhg/HkaPhksvhZQUaK4hjSI/pILpwOq0Y8zccJA7L21JwxqVXMcJWRERhudv6kSnxjV44P11bNyX5TqSXySneKhZOZphFzR0HUVEfMwYMx1YCrQ1xuwzxtwBPAP0M8bsAPqe+rOI+FtBAdx6K0yYAHfcAXPmQA1dhSby31QwK1hZmeWJmanUqxbLry9r4TpOyIuLjuTNUV2pFR/DHckrOZiV7zqST+0/kc/8LYe4uVtTTSEWCUHW2uHW2gbW2mhrbWNr7VvW2qPW2j7W2tbW2r7W2vBd/itSUTIzoU8f7yCfZ56BN9+E6GjXqUQCkgpmBfts/X7W7z3BHwa0o3JMlOs4YSGhaixvj+lGXlEpt09excnCEteRfObdZWkAjOjR1HESERGRELV1q3dS7Jo18NFH8PDDmhQrchoqmBUov6iUZ+du4/zG1bn2wkau44SVtvWr8sptndl+OIf7pq+ltCz4J8sWFJfy/op0+rWvR+OalV3HERERCT2LF3sH+OTmeqfG3nCD60QiAU8FswJN+no3B7MKeGxIeyIi9JOvinZZmwQeH9aBRVszeGpWqus45+zz9Qc4nlfMaK0mERER8b3Jk72TYhs29E6Kvegi14lEgoIKZgU5lFXA61/tYkjHBnRvXst1nLA1skczbu/dnLe/28PUpR7Xcc7a96tJ2tarSs8WtV3HERERCR1lZfDoozB2LFx+OXz3HSQmuk4lEjRUMCvIs/O2Ulpm+eMgrSVx7dEhSfRpV5fHv9jCkm0/uT4uoK1OO87mA9mM6tVMq0lERER8JT/fOyl24kT45S9h9mxNihU5QyqYFWD93hPMWLOf2y9uTpNaulfOtcgIw9+GX0jbelW5d9path7Kdh3pjE1O8VAtLkr38oqIiPhKWpp3UuwHH8Czz8Ibb2hSrMhZUMH0M2stT87cQp0qMdxzRUvXceSU+Ngo3hrTlcoxkdwxeRUZOQWuI5Xb4ewC5m46xE1dm2gSsYiIyLkqKvKuHklKgvXr4eOP4aGHNClW5CypYPrZ7I2HWJV2nN/1b0vVOP0ULJA0qF6Jt0Z349jJIn45ZTX5RaWuI5XLe8vSKLWWUT0TXUcREREJbl99BRdeCI88AgMHQmoqXH+961QiQU0F048Kikt5ek4q7epX5aauTVzHkR/RsXF1XrrlAjbsO8HvPlpHWYCvLyksKWXainSubFuXprV1ubWIiMhZOXwYRo3yDvHJy4MvvoAZM6Cp9kqLnCsVTD96+7s97Duez5+GtidSa0kC1oAO9Rk3KInZGw/x1/nbXMc5rVkbDnIkt0irSURERM5GaSm89hq0awfvv++dFrt5Mwwd6jqZSMjQDVx+kpFTwKuLd9E3qR69WtVxHUd+xi8uac7uIyd5dckuEuvEB+wZ5+QUDy0S4rlYX1MiIiJnZvVquOsuWLkSrrwSXnnFWzRFxKd0BtNPXpi/ncKSUh4dkuQ6ipSDMYYnru7Axa3qMG7GRlJ2HXEd6X+sTT/O+n1ZjO6ZSITOiIuIiJRPVhb85jfQvTukp8N778HChSqXIn6igukHWw5k88GqvYzqmUjzOvGu40g5RUdG8MptnUmsE89d765hV2au60j/ITnFQ5XYKK7v0th1FBERkcBnLUybBm3bwquvwt13w9at3j2XmhAr4jcqmD72/VqSGpWiue/K1q7jyBmqXimad8Z0IyrCcPvklRw7WeQ6EuC95HrWxoPc0KUxVWJ1ZbuIiMhpbd0KffvCbbd5B/esWAF//zvUqOE6mUjIU8H0sQVbDrN091F+268N1StrLUkwalKrMpNGdeFgVgG/nrqawhL360umL99LcallVM9mrqOIiIgErrw87+Ce88/33nP56quwdCl06eI6mUjYUMH0oaKSMibOTqVV3Src2l1jroNZl2a1+OuNnVjhOcYjn2zEWnfrS4pKynhveRqXtkmgRUIVZzlEREQC2qxZ0KEDTJwIt9wC27Z5h/pERrpOJhJWVDB9aMpSD56jeTw6JImoSP3VBrthnRryu35tmLF2P//4cqezHHM3HyIjp5AxvXT2UkRE5H+kp8O113pXjVSqBEuWwJQpUK+e62QiYUktyEeOnSzi5UU7uKxNAle0res6jvjIvVe24roLG/H8gu18vv6AkwzJKR6a1a7M5W30dSUiIvJvxcXw7LOQlATz5sEzz8C6dXDZZa6TiYQ1TQvxkZcWbievqJTHtJYkpBhjePr6juw7ns/vP1pPoxqV6NKsZoUdf9P+LFanHeexIUlaTSIiIvK9r7/2ToXdvBmuvhpefhma6UofkUCgM5g+sONwDu8tT+fW7k1pXa+q6zjiY7FRkbwxsgsNq8dx55RV7D2WV2HHnpzioVJ0JDd2bVJhxxQREQlYmZkwZoz3LGVuLnz+OXz6qcqlSABRwfSBCbNSqRwTyW/7tXEdRfykZnwMb43pRkmZZezklWTlF/v9mEdzC/l8/QGu69yI6pU0kVhERMJYWRm88YZ3p+W0afDII96zl1dd5TqZiPwXFcxztHhbBl9tz+T+Pq2pFR/jOo74UcuEKrw+ogueIye5d9oaikvL/Hq891fupaikjNG9Ev16HBERkYC2di307Am//jV06gTr13snxcbHu04mIj9CBfMcFJeW8dSsVBJrV2ZUz0TXcaQC9GxZm4nXdeSbHUf48+eb/ba+pKS0jPeWpdGrZW3a6LJrEREJR1lZcP/90LUreDwwdSp8+aV3qI+IBCwVzHMwfUU6OzNyGTc4iZgo/VWGi5u6NuHuy1sybXk6b327xy/HWLDlMAeyCnT2UkREwo+18P773iL59797z1xu2wYjRoDRwDuRQKcpsmcpK6+YFxdsp2eL2vRrrz1L4eb3/dviOXqSp2an0rRWZfp3qO/T55+c4qFRjUr0TdLXloiIhJHt2+Gee2DhQujSxTvEp2tX16lE5AzotNtZ+tuXOziRX8z4oe0x+mla2ImIMLxw0wWc37gG97+/jk37s3z23KkHs1m+5xgjezYjUqtJREQkHOTnw/jx0LEjrFwJr7wCy5erXIoEIRXMs7DnyEmmLPVwc9cmtG9YzXUccSQuOpI3R3WhVnwMdySv5GBWvk+ed8pSD7FREdys1SQiIhIO5syB886DCRPgpptg61bvjsvISNfJROQsqGCehYmzU4mJjODB/lpLEu7qVo3jrTFdOVlYyh2TV3GysOScnu9EXhH/Wrufay5oRE1NJRYRkVC2dy9cfz0MHgwxMd4BPlOnQn3f3nYiIhVLBfMMpew8woIth7nnylbUrRrnOo4EgHb1q/GPWy9k66Fs7n9/LaVlZz9Z9sNVeyko1moSEREJYcXF8Ne/eof4zJnjXTmyfj1ccYXrZCLiAyqYZ6C0zPLEzC00rlmJ23s3dx1HAsjlbevyf8M6sDA1g4mzU8/qOUrLLFOWptE9sZYuvRYRkdD07bfQuTM89JC3UG7eDI884j2DKSIhQQXzDHy0ai9bD+Xwx0HtiIvWfQHyn0b2TGRs70Te+nYPU5elnfHnf7k1g33H83X2UkREQk9mJtx+O1xyCWRnw6efwhdfQHP9wF4k1KhgllNOQTF/nb+Nrs1qMqRjA9dxJEA9NqQ9V7ary+Ofb+ar7Zln9LnJKR7qV4ujfwetJhERkRBRVgZvvgnt2nnvr3z4YdiyBa6+2nUyEfETFcxyenXJLo7kFmktiZxWZIThb8MvpE29qtz73hq2Hcop1+ftzMjh251HGNGjKdGR+t9SRERCwLp10Lv3/2Pv3sPlqut78b8/JAEMIKhEpEAIaquiFMSUoqjHSrHg3VYrGm89x6at2qO/2vZYc562ammtp0Wttdq0WkGDl4q0gFdEWlsvaFAwXAW5CVKIWLkYQQjf3x8z0RD3TnZg7Vkze79ezzPPzKxZe/abtcl893uvtb4rWblycPmR885L3vzmZJdd+k4GzCK/yc7At7+3Ie/5MQlIQQAAIABJREFUjyvyq4/eJwfvt0ffcRhzu+60MO956fLcZ8cF+Z/v+2rW33L7Nr/mhC9elR0X7JBjD1s6goQAMItuvjl5zWuSxzwm+da3khNOSM46KznwwL6TASOgYM7Amz95cRbsUPmDox/WdxQmxM/scZ+856W/kO/94Ed5+Ylrc9sdG6dd9+bb7sjJX7smTz947+y5604jTAkAHWot+chHBrPD/s3fDPZcXnJJ8pKXJI7+gnlDwdyGr175vXx83XX5rf/x4Oy9+336jsMEOWjf3fO2Yw/JN675fl77kfNy1zSXL/no2muy4Ucb8zKT+wAwqS69NDn66OT5zx9cx/LLX07e9a7kfvfrOxkwYgrmVtx1V8sbT7swD7rvzln5xAf3HYcJ9CuPfFD+6JiH5+Prrstfn3HJT71+110tJ37pyjx66R75+X0dfg3AhLnttuRP/3RwjuWXv5y84x3JV76SHHZY38mAnizsO8A4O+Xr12bdtTflrc8/OIt3tKm4Z37zCQ/OFd/dkHee9a0se8Aued7y/X782r9fuj5X3rgh/99RP9djQgC4Bz71qeRVrxqcZ/nCFyZ/9VfJ3mbah/lum3swq2rnqvpKVZ1XVRdU1RtGEaxvG350Z97y6Ytz8L6751kH79N3HCZYVeWNz3pkHv/QPfP6U9blS9+68cevnfDFK7Nkt51yzKMMyABMiGuvTZ73vOSYY5KFC5PPfjZZs0a5BJLM7BDZ25M8ubV2cJJDkhxdVYfPbqz+vfvfL8/1N9+eP37GgdlhByemc+8sWrBD3rni0Oz/gF3y2x84J5evvzVXfPcH+bdL1ueFhy3NjgsdrQ7AmLvzzuT44wfXtDz99OTP/mxw6ZEjj+w7GTBGtvlbbRu4dfh00fA29Wwlc8R1N/0wqz//rTz95/fOY/a/f99xmCN2v8+i/NPLfiELd6j8z/d9Ne/43KVZuENlxS+6NAkAY+4LXxhcduS1r02e+MTkgguSVauSncx+DtzdjHabVNWCqjo3yQ1JzmitnT27sfr1lk9dkrta8rpjHt53FOaY/e6/OKtf8ph856bb8rGvXZunHrR3HnjfnfuOBQBT++53k5e/PHn845P//u/klFMGey8fbPJDYGozKpittY2ttUOS7JvksKp61JbrVNXKqlpbVWvXr1/fdc6ROffb388pX782v/mEA7Lv/Rb3HYc56DH73z9/9byDc/9ddsxvPsEADcAYuuuu5D3vGRwOe8IJyR/8QXLhhcmzn+2alsBWbdfUqK2171fVWUmOTnL+Fq+tTrI6SZYvXz6Rh9C21vLG0y7Ikt12yu886aF9x2EOe+bBP5OnH7S383sBGD/f+EbyO7+TfPGLyROekPzd3yWP+ql9CwBTmsksskuqao/h4/skOSrJxbMdrA+nfeO6fO3q7+f3n/Jz2XUnlyVhdimXAIyVW24ZnGN56KHJN7+ZvO99yb//u3IJbJeZtKi9k5xQVQsyKKQfaa2dPruxRu+2OzbmLz95cQ7c+7557mP22/YXAADMBa0lJ5+cvOY1yXe+k6xcmfz5nyf3N9EhsP22WTBba99I8ugRZOnVe/7zilz7/R/mr553cBbYswQAzAeXXZa86lXJpz+dHHJI8tGPJofP+avRAbPIcaBJbrj5trzzrMvylAP3ymMf8oC+4wDANlXVlUluSbIxyZ2tteX9JmKi3HZb8pd/mfzFXyQ77pi8/e3JK16RLPSrIXDv+BRJ8lefuSR3bLwrr3/qI/qOAgDb45daa9/tOwQT5jOfSV75ysHey2OPTY4/Ptl7775TAXPEjC5TMpedf+1N+edzrsnLHrcsy/bcpe84AACz49prk+c/P/mVXxlcauQzn0k++EHlEujUvC6YrbW86fQLc7/FO+ZVT/7ZvuMAwPZoST5TVedU1cq+wzDG7rwzedvbkkc8IvnXf03e+MZk3brkqKP6TgbMQfP6ENlPX3B9zr7ie3nTsx+V3e+zqO84ALA9Ht9au7aqHpjkjKq6uLX2+c1XGBbPlUmydOnSPjLSty99aXBNy/POS445JnnHO5KHPKTvVMAcNm/3YN5+58b8xScvys/ttWte8AsuSwLAZGmtXTu8vyHJKUkOm2Kd1a215a215UuWLBl1RPp0442Dy4087nGDxyefnHz848olMOvmbcE84YtX5qobN2TV0w7MwgXzdjMAMIGqapeq2m3T4yRPSXJ+v6kYC3fdlfzTPyUPf3jy3vcmr31tctFFya/+6uC8S4BZNi8Pkb3x1tvzjjMvyy89bEn+x8/5iy4AE2evJKfUoDAsTHJSa+1T/Uaid+vWDQ6H/cIXkiOOSN71ruSgg/pOBcwz87JgvvWz38yGOzZm1dNclgSAydNauzzJwX3nYEzcemvyhjckb31rsscegz2XL31psoMjtIDRm3cF85L/uiUnnX11XvLYZXnoA3frOw4AwD3TWvKxjyWveU1yzTXJb/5m8hd/kTzgAX0nA+axefWnrdZa/uzjF2a3nRfl1Ue6LAkAMKEuvzx52tOS5z53UCi/+MVk9WrlEujdvCqYZ11yQ/7j0u/mfx/5s7nfLjv2HQcAYPvcfnvypjclj3xk8h//MTgsdu3a5LGP7TsZQJJ5dIjsHRvvyp99/KI8eM9d8uLD9+87DgDA9vnsZ5NXvCK59NLk1389Of74ZJ99+k4FcDfzZg/mmi9flcvX/yCvf+ojsuPCefOfDQBMuuuuS17wguSoowbnXX7608mHP6xcAmNpXjSt72/4Ud762UtzxEMfkCMf8cC+4wAAbNuddyZ/8zfJwx6WnHLKYKbYdeuSpzyl72QA05oXh8i+/cxLc8ttd+T/Pu3AlIsMAwDj7LzzkhNPTNasSa6/PvmVX0n+9m+Thz6072QA2zTnC+a31t+a93/pqjz/F5bmEXvft+84AAA/7brrkpNOGhTLb3wjWbRoMEvsy1+ePPWpiT+QAxNizhfMP//4Rdl50YL83lE/13cUAICf2LAh+dd/HZTKz3wmueuu5Bd/MXnnO5PnP98lR4CJNKcL5n9e+t2cefENed0xD8+S3XbqOw4AMN/dddfg8iInnpj88z8nt9ySLF2a/NEfJS9+8eB8S4AJNmcL5p0b78qbTr8w+93/PvmNI5b1HQcAmM+++c3k/e8f3K66Ktl11+R5z0te8pLkiU9MdpgX8y4C88CcLZgfXvvtXHL9Lfm7FYdmp4UL+o4DAMw3N944uJzIiScmZ589KJFHHZX8+Z8nz352snhx3wkBOjcnC+bNt92R4z/zzRy27P455lEP6jsOADBf/OhHySc+MSiVp5+e3HFH8qhHJf/v/yUvfGHyMz/Td0KAWTUnC+Y7z7os39vwo7zv6S5LAgDMstaSr351UCo/9KHBnsu99kp+93cH51UefLBZYIF5Y84VzKtv3JB/+s8r86uP3jcH7bt733EAgLnq6quTD3xgUCwvuSTZeefBoa8vecngUNiFc+7XLIBtmnOffH/xyYuyYIfKHx5tFjYAoGO33JKcfPKgVJ511mDZE5+Y/MEfJM99brK7P24D89ucKphfvvzGfPL8/8rvHfVz2eu+O/cdBwCYCzZuTD772cEMsB/7WPLDHyYPfWjyxjcmL3pRcsABfScEGBtzpmDedVfLn338wvzM7jvnN5/w4L7jAACTbt26wZ7KNWuS665L9tgjeelLB4fAHn648yoBpjBnCubJX7sm5197c95+7CG5z44uSwIA3APXX5+cdNKgWJ577uA8yqc9bVAqn/a0ZKed+k4IMNbmRMH8we135i2fviSH7LdHnnmw6b8BgO3wwx8mp546KJWf/vTgkNhf+IXkHe9Inv/8ZMmSvhMCTIw5UTDf/e/fyvpbbs/fv/gxLksCAGzbXXclX/jCoFR+5CPJzTcn++6b/OEfDi4t8ohH9J0QYCJNfMG89vs/zOrPX55nHvwzOXTp/fqOAwCMs0svHUzW8/73J1demeyyy2D215e8JHnSk5Iddug7IcBEm/iC+ZefvDhJ8n+OeXjPSQCAsfS97w32Up54YvKlLw0m5/nlX07e9KbkOc8ZlEwAOjHRBfNrV/93Tj3vO/ndJz80++xxn77jAADj4kc/Sj71qUGpPO20wfNHPjJ5y1uSF74w2WefvhMCzEkTWzBba3njaRfmgbvtlN/+Hw/pOw4A0LfWknPOGZTKD34w+e53BxP0vOIVg0NgDznEpUUAZtnEFsxTz/tOzv329/OW5/58dtlpYv8zAIB769vfHlyr8sQTk4suGlxK5FnPGpTKpzwlWbSo74QA88ZENrMf/mhj/vKTF+eRP3PfPPfQffuOAwCM2q23Jh/72KBUfu5zg72Xj398snp18rznJXvs0XdCgHlpIgvmP/zH5fnOTbflrc8/JDvs4FAXAJgXNm4clMkTTxyUyw0bkgc/OPmTP0le9KLkIU6ZAejbxBXM62++Le/6t2/l6Ec+KL/44Af0HQcAmG0XXDAolR/4QPKd7wz2Tr74xYPb4x7nvEqAMTJxBfP/ffqSbLyr5Y+e6rIkADBn3XDDYKKeE09Mvva1ZOHC5Jhjkre/PXn605Odd+47IQBTmKiCue6am/LRc67Jbz3xwdn/Aa5ZBQBzym23DS4pcuKJySc/OTgk9jGPGZTKY49NHvjAvhMCsA0TUzBba3nT6RfmAbvsmFc++aF9xwEAutBa8oUvJO9/f/LhDyc33TS4RuXv//7gENhHPrLvhABsh4kpmJ86/7/ylSu/l+Oe86jcd2fTjQPARPvWtwal8v3vTy6/PFm8OPm1XxtcWuSXfilZsKDvhADcAxNRMG+7Y2P+/JMX5WF77ZbnL9+v7zgAwD3x/e8nH/nI4BDYL3xhMDnPkUcmf/qnyXOek+y6a98JAbiXJqJgvu+LV+bb3/th3v+/DsvCBTv0HQcAmKk77kg+/elBqTz11OT225NHPCJ585uTFSuSfV3PGmAuGfuCuf6W2/O3n7ssRz78gXnCzy7pOw4AsC2tJV//+qBUnnRSsn59sueeyW/91uAQ2EMPdWkRgDlqmwWzqvZLcmKSvZK0JKtba2+f7WCbHH/GN3PbHRvz+qc9YlTfEgC4J669NlmzZlAsL7gg2XHH5JnPHJTKo49OFplDAWCum8kezDuTvLa19rWq2i3JOVV1RmvtwlnOlov/6+Z8+KtX56WPW5aHLHFeBgCMnVtvTU45ZVAqzzxzsPfycY9L3v3u5Nd/Pbnf/fpOCMAIbbNgttauS3Ld8PEtVXVRkn2SzGrB3HRZkt12XpRXH/mzs/mtAIDtsXFj8m//NiiVJ5+c/OAHyQEHJH/8x8mLXpQ81OXEAOar7ToHs6qWJXl0krNnI8zmzrzohnzhshvzJ884MHss3nG2vx0AsC0XXTQolR/4QHLNNcl975u88IWDQ2CPOMJ5lQDMvGBW1a5JTk7ymtbazVO8vjLJyiRZunTpvQ72js9dmgcv2SUvOnz/e/1eAEAHfuM3krVrB+dT/vVfJ894RnKf+/SdCoAxMqOCWVWLMiiXa1prH5tqndba6iSrk2T58uXt3gZ7z8t+IdfffFsWuSwJAIyHv//75EEPSvbaq+8kAIypmcwiW0nek+Si1trxsx9pYM9dd8qeu+40qm8HAGzLwQf3nQCAMTeT3YNHJHlxkidX1bnD21NnORcAAAATZiazyP5nEmftAwAAsFVOcAQAAKATCiYAAACdUDABAADohIIJABOoqo6uqkuq6rKqel3feQAgUTABYOJU1YIk70xyTJIDk7ygqg7sNxUAKJgAMIkOS3JZa+3y1tqPknwoybN6zgQACiYATKB9knx7s+fXDJcBQK8UTACYo6pqZVWtraq169ev7zsOAPOAggkAk+faJPtt9nzf4bK7aa2tbq0tb60tX7JkycjCATB/VWut+zetWp/kqg7eas8k3+3gfUZN7tGSe/QmNbvco9VV7v1ba9rRZqpqYZJvJjkyg2L51SQvbK1dsJWvMTbLPUpyj96kZpd7tGZ9bF7YwZv/lK5+Eaiqta215V281yjJPVpyj96kZpd7tCY19yRord1ZVa9K8ukkC5K8d2vlcvg1xma5R0bu0ZvU7HKP1ihyz0rBBABmV2vtE0k+0XcOANicczABAADoxLgXzNV9B7iH5B4tuUdvUrPLPVqTmputm9Sfq9yjJffoTWp2uUdr1nPPyiQ/AAAAzD/jvgcTAACACdF7wayq91bVDVV1/jSvV1X9TVVdVlXfqKpDR51xKjPI/aSquqmqzh3e/njUGadSVftV1VlVdWFVXVBVr55inbHb5jPMPXbbvKp2rqqvVNV5w9xvmGKdnarqw8PtfXZVLRt90p/KNJPcL6uq9Ztt75f3kXUqVbWgqr5eVadP8drYbe9NtpF7nLf3lVW1bphr7RSvj91nCltnbB4tY/NoGZv7YWwerV7H5tZar7ckT0xyaJLzp3n9qUk+maSSHJ7k7L4zzzD3k5Kc3nfOKXLtneTQ4ePdMriO2oHjvs1nmHvstvlwG+46fLwoydlJDt9inVckeffw8bFJPjwhuV+W5G/7zjpN/t9LctJU/z+M4/aeYe5x3t5XJtlzK6+P3WeK2zZ/psbm0eY2No82t7G5n/zG5tHm7m1s7n0PZmvt80m+t5VVnpXkxDbw5SR7VNXeo0k3vRnkHkuttetaa18bPr4lyUVJ9tlitbHb5jPMPXaG2/DW4dNFw9uWJz4/K8kJw8cfTXJkVdWIIk5phrnHUlXtm+RpSf5xmlXGbnsnM8o9ycbuM4WtMzaPlrF5tIzNo2dsHkuz9pnSe8GcgX2SfHuz59dkAj68hh47PIzhk1X1yL7DbGl4+MGjM/gL2ObGeptvJXcyhtt8eGjFuUluSHJGa23a7d1auzPJTUkeMNqUP20GuZPk14aHVXy0qvYbccTpvC3JHya5a5rXx3J7Z9u5k/Hc3sngF5zPVNU5VbVyitfH+jOFe2SSf6ZjN05sztg8GsbmkTM2j15vY/MkFMxJ9bUk+7fWDk7yjiT/0nOeu6mqXZOcnOQ1rbWb+84zU9vIPZbbvLW2sbV2SJJ9kxxWVY/qO9NMzCD3aUmWtdZ+PskZ+clfHntTVU9PckNr7Zy+s2yPGeYeu+29mce31g5NckySV1bVE/sOBNMYy3FiE2Pz6BibR8fY3JvexuZJKJjXJtn8rwH7DpeNtdbazZsOY2itfSLJoqras+dYSZKqWpTBQLCmtfaxKVYZy22+rdzjvM2TpLX2/SRnJTl6i5d+vL2ramGS3ZPcONp005sud2vtxtba7cOn/5jkMaPONoUjkjyzqq5M8qEkT66qD2yxzjhu723mHtPtnSRprV07vL8hySlJDttilbH8TOFemcif6TiPE8bmfhibR8LY3IM+x+ZJKJinJnnJcKajw5Pc1Fq7ru9Q21JVD9p07HhVHZbBtu77H0qGmd6T5KLW2vHTrDZ223wmucdxm1fVkqraY/j4PkmOSnLxFqudmuSlw8fPTfK51lqv51TMJPcWx+k/M4Nzb3rVWvuj1tq+rbVlGUwS8LnW2ou2WG3stvdMco/j9k6Sqtqlqnbb9DjJU5JsOYPn2H2mcK9N5M90HMeJYRZj8wgZm0fL2Dx6fY/NC7t4k3ujqj6YwQxje1bVNUn+JIOTltNae3eST2Qwy9FlSTYk+Y1+kt7dDHI/N8nvVNWdSX6Y5Ni+/6EMHZHkxUnWDY/hT5LXJ1majPU2n0nucdzmeyc5oaoWZDCofqS1dnpVvTHJ2tbaqRkMzu+vqssymJzi2P7i/thMcv/vqnpmkjszyP2y3tJuwwRs7ylNyPbeK8kpw98fFyY5qbX2qar67WSsP1PYCmPzyBmbR8vYPAYmYHtPaUK2d69jc/X/bxwAAIC5YBIOkQUAAGACKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJiwnarqZVXVprn98mavL+vwe+5XVR+tqpuq6uaq+lhVLe3q/QFgko16bK6qfavqHVX1para0PW4D5NsYd8BYII9L8k1Wyy7MMl5SR6b5LouvklVLU7yuSS3J3lpkpbkz5KcVVU/31r7QRffBwDmgJGMzUkemuTXk5yT5D+SPKWj94WJp2DCPXdua+2yaV5b3+H3+c0kD07ysE3fr6q+keTSJL+V5PgOvxcATLJRjc2fb63tlSRV9fIomPBjDpGFjk11GE5VLa6qd1XVjVV1a1WdUlWPG673sm285TOTfHnzAbO1dkWSLyR51iz8JwDAnNL12Nxau2uWI8PEUjDhnltQVQs3uy3Yyrqrk/zPJH+V5DlJLkmyZobf55FJzp9i+QVJDtyewAAwx41qbAam4RBZuOcu3uL5F5I8fsuVquphSV6Y5HWttbcMF58xPLfyd2fwfe6f5L+nWP69JPebeVwAmPNGNTYD01Aw4Z57Tu4+kcAt06z3i0kqyT9vsfyjMYgBQJeMzdAzBRPuufO3MpHA5vYe3t+wxfLrZ/h9/jtT76mcbs8mAMxXoxqbgWk4BxNm36Yp0R+4xfK9Zvj1F2RwHuaWDsxg6nUAYPvc27EZmIaCCbPvKxlcu/J5Wyzf8vl0Tk1yeFU9eNOC4Sx4RwxfAwC2z70dm4FpOEQWZllr7eKqOinJm6pqhwwuyvzkJM8YrrKtqc7/IcmrkvxrVf3fDAbENyX5dpK/n53UADB3dTA2p6qeO3z4mOH9MVW1Psn61tq/d50ZJoWCCaOxMoOJBv4wyY5JPpfklUlOT3LT1r6wtfaDqnpykrcmeX8GkxKcmeQ1rbVbZzM0AMxh93hsHtpygqC/G97/e5IndRMRJk+11vrOAPNSVf1+krckWdZau7rvPAAw3xmb4d6zBxNGoKqenuRRSc7N4LCbJyT5/SQfMYABwOgZm2F2KJgwGrckeXaS1yXZJcm1Sf4myZ/0GQoA5jFjM8wCh8gCAADQCZcpAQAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdGLhbLzpnnvu2ZYtWzYbbw3APHPOOed8t7W2pO8ck87YDEBXtjY2z0rBXLZsWdauXTsbbw3APFNVV/WdYS4wNgPQla2NzQ6RBQAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdGKbBbOqHlZV5252u7mqXjOKcAAwn1XVflV1VlVdWFUXVNWrh8v/tKqu3WxsfmrfWQEgmUHBbK1d0lo7pLV2SJLHJNmQ5JRZTwbQkTXr1mTZ25ZlhzfskGVvW5Y169b0HQlm6s4kr22tHZjk8CSvrKoDh6+9ddP43Fr7RH8RARh7V6xJ/mVZctIOg/srZu93oYXbuf6RSb7VWrtqNsIAdG3NujVZedrKbLhjQ5LkqpuuysrTViZJVhy0os9osE2tteuSXDd8fEtVXZRkn35TATBRrliTfGVlsnHwu1A2XDV4niQHdP+70Paeg3lskg92ngJglqw6c9WPy+UmG+7YkFVnruopEdwzVbUsyaOTnD1c9Kqq+kZVvbeq7tdbMADG23mrflIuN9m4YbB8Fsy4YFbVjkmemeSfp3l9ZVWtraq169ev7yofwL1y9U1Xb9dyGEdVtWuSk5O8prV2c5J3JXlIkkMy2MP519N8nbEZYL7bMM3vPNMtv5e2Zw/mMUm+1lq7fqoXW2urW2vLW2vLlyxZ0k06gHtp6e5Lt2s5jJuqWpRBuVzTWvtYkrTWrm+tbWyt3ZXkH5IcNtXXGpsByOJpfueZbvm9tD0F8wVxeCwwYY478rgsXrT4bssWL1qc4448rqdEMHNVVUnek+Si1trxmy3fe7PVnpPk/FFnA2BCHHxcsuDuvwtlweLB8lkwo0l+qmqXJEcl+a1ZSQEwSzZN5LPqzFW5+qars3T3pTnuyONM8MOkOCLJi5Osq6pzh8ten+QFVXVIkpbkyhifAZjOpol8zls1OCx28dJBuZyFCX6SpFprnb/p8uXL29q1azt/XwDmn6o6p7W2vO8ck87YDEBXtjY2b+8ssgAAADAlBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnZhRwayqParqo1V1cVVdVFWPne1gAAAATJaFM1zv7Uk+1Vp7blXtmGTxLGYCAABgAm1zD2ZV7Z7kiUnekySttR+11r4/28EAYL6rqv2q6qyqurCqLqiqVw+X37+qzqiqS4f39+s7KwAkMztE9oAk65P8U1V9varQ9MPFAAAZgElEQVT+sap2meVcAEByZ5LXttYOTHJ4kldW1YFJXpfkzNbazyY5c/gcAHo3k4K5MMmhSd7VWnt0kh9kioGsqlZW1dqqWrt+/fqOYwLA/NNau6619rXh41uSXJRknyTPSnLCcLUTkjy7n4QAcHczKZjXJLmmtXb28PlHMyicd9NaW91aW95aW75kyZIuMwLAvFdVy5I8OsnZSfZqrV03fOm/kuzVUywAuJttFszW2n8l+XZVPWy46MgkF85qKgDgx6pq1yQnJ3lNa+3mzV9rrbUkbZqvc3QRACM10+tg/m6SNVX1jSSHJPnz2YsEAGxSVYsyKJdrWmsfGy6+vqr2Hr6+d5IbpvpaRxcBMGozukxJa+3cJMtnOQsAsJmqqgxmcb+otXb8Zi+dmuSlSd48vP/XHuIBwE+Z6XUwAYDROyLJi5Osq6pzh8ten0Gx/EhV/a8kVyX59Z7yAcDdKJgAMKZaa/+ZpKZ5+chRZgGAmZjpOZgAAACwVQomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAAKN1xZrkX5YlJ+0wuL9iTd+J6MjCvgMAAADzyBVrkq+sTDZuGDzfcNXgeZIcsKK/XHTCHkwAAGB0zlv1k3K5ycYNg+VMPAUTAAAYnQ1Xb99yJoqCCQAAjM7ipdu3nImiYAIAAKNz8HHJgsV3X7Zg8WA5E29Gk/xU1ZVJbkmyMcmdrbXlsxkKAACYozZN5HPeqsFhsYuXDsqlCX7mhO2ZRfaXWmvfnbUk9GbNujVZdeaqXH3T1Vm6+9Icd+RxWXGQf+AAAMySA1YolHOUy5TMc2vWrcnK01Zmwx2DmbyuuumqrDxtME20kgkAAGyPmZ6D2ZJ8pqrOqaqVsxmI0Vp15qofl8tNNtyxIavONE00AACwfWa6B/PxrbVrq+qBSc6oqotba5/ffIVh8VyZJEuXmgFqUlx909TTQU+3HAAAYDoz2oPZWrt2eH9DklOSHDbFOqtba8tba8uXLFnSbUpmzdLdp/5jwHTLARidqnpvVd1QVedvtuxPq+raqjp3eHtqnxkBYHPbLJhVtUtV7bbpcZKnJDl/61/FpDjuyOOyeNHdp4levGhxjjvSNNEAY+B9SY6eYvlbW2uHDG+fGHEmAJjWTPZg7pXkP6vqvCRfSfLx1tqnZjcWo7LioBVZ/YzV2X/3/VOp7L/7/ln9jNUm+AEYA8PTUb7Xdw4AmKltnoPZWrs8ycEjyEJPVhy0QqEEmCyvqqqXJFmb5LWttf/uOxAAJDOfRRYAGA/vSvKQJIckuS7JX0+3YlWtrKq1VbV2/fr1o8oHwDymYALABGmtXd9a29hauyvJP2SKifc2W9cEfACMlIIJABOkqvbe7OlzYuI9AMbITK+DCQCMWFV9MMmTkuxZVdck+ZMkT6qqQ5K0JFcm+a3eAgLAFhRMABhTrbUXTLH4PSMPAgAz5BBZAAAAOqFgAgAA0AkFEwAAgE4omAAAAHRCwQQAAKATCiYAAACdUDABAADohIIJAABAJxRMAAAAOqFgAgAA0AkFEwAAgE4omAAAAHRCwQQAAKATCiYAAACdUDABAADohIIJAABAJxRMAAAAOqFgAgAA0AkFEwAAgE4omAAAAHRCwQQAAKATCiYAAACdUDABAADohIIJAABAJxRMAAAAOqFgAgAA0AkFEwAAgE4omAAAAHRCwQQAAKATCiYAAACdUDABAADohIIJAABAJxRMAAAAOqFgAgAA0AkFEwAAgE4omAAAAHRCwQQAAKATCiYAAACdUDABAADohIIJAABAJ2ZcMKtqQVV9vapOn81AAAAATKbt2YP56iQXzVYQAOaGNevWZNnblmWHN+yQZW9bljXr1vQdCQAYkRkVzKraN8nTkvzj7MYBYJKtWbcmK09bmatuuiotLVfddFVWnrZSyQSAeWKmezDfluQPk9w1i1kAmHCrzlyVDXdsuNuyDXdsyKozV/WUCAAYpW0WzKp6epIbWmvnbGO9lVW1tqrWrl+/vrOAAEyOq2+6eruWAwBzy0z2YB6R5JlVdWWSDyV5clV9YMuVWmurW2vLW2vLlyxZ0nFMACbB0t2XbtdyAGBu2WbBbK39UWtt39basiTHJvlca+1Fs54MgIlz3JHHZfGixXdbtnjR4hx35HE9JQIARsl1MAHozIqDVmT1M1Zn/933T6Wy/+77Z/UzVmfFQSv6jjaRquq9VXVDVZ2/2bL7V9UZVXXp8P5+fWYEgM0t3J6VW2v/luTfZiUJAHPCioNWKJTdeV+Sv01y4mbLXpfkzNbam6vqdcPn/6eHbADwU+zBBIAx1Vr7fJLvbbH4WUlOGD4+IcmzRxoKALZCwQSAybJXa+264eP/SrJXn2EAYHMKJgBMqNZaS9Kme90lxAAYNQUTACbL9VW1d5IM72+YbkWXEANg1BRMAJgspyZ56fDxS5P8a49ZAOBuFEwAGFNV9cEkX0rysKq6pqr+V5I3Jzmqqi5N8svD5wAwFrbrMiUAwOi01l4wzUtHjjQIAMyQPZgAAAB0QsEEAACgEwomAAAAnVAwAQCY365Yk/zLsuSkHQb3V6zpOxFMLJP8AAAwf12xJvnKymTjhsHzDVcNnifJASv6ywUTyh5MAADmr/NW/aRcbrJxw2A5sN0UTAAA5q8NV2/fcmCrFEwAAOavxUu3bzmwVQomAADz18HHJQsW333ZgsWD5cB2UzABAJi/DliRHLY6Wbx/khrcH7baBD9wD5lFFgCA+e2AFQoldMQeTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBOKJgAAAB0QsEEAACgEwomAAAAnVAwAQAA6ISCCQAAQCcUTAAAADqhYAIAANAJBRMAAIBObLNgVtXOVfWVqjqvqi6oqjeMIhgAAACTZSZ7MG9P8uTW2sFJDklydFUdPruxYO5as25Nlr1tWXZ4ww5Z9rZlWbNuTd+RAACgEwu3tUJrrSW5dfh00fDWZjMUzFVr1q3JytNWZsMdG5IkV910VVaetjJJsuKgFX1GAwCAe21G52BW1YKqOjfJDUnOaK2dPbuxYG5adeaqH5fLTTbcsSGrzlzVUyIAAOjOjApma21ja+2QJPsmOayqHrXlOlW1sqrWVtXa9evXd50T5oSrb7p6u5YDAMAk2a5ZZFtr309yVpKjp3htdWtteWtt+ZIlS7rKB3PK0t2XbtdyAACYJDOZRXZJVe0xfHyfJEcluXi2g8FcdNyRx2XxosV3W7Z40eIcd+RxPSUCAIDuzGQP5t5JzqqqbyT5agbnYJ4+u7Fgblpx0Iqsfsbq7L/7/qlU9t99/6x+xmoT/AAAMCfMZBbZbyR59AiywLyw4qAVCiUAAHPSNgsmADB+qurKJLck2Zjkztba8n4TAYCCCQCT7Jdaa9/tOwQAbLJds8gCAADAdBRMAJhMLclnquqcqlrZdxgASBwiCwCT6vGttWur6oFJzqiqi1trn998hWHxXJkkS5e63i4As88eTACYQK21a4f3NyQ5JclhU6yzurW2vLW2fMmSJaOOCMA8pGACwISpql2qardNj5M8Jcn5/aYCAIfIAsAk2ivJKVWVDMbyk1prn+o3EgAomAAwcVprlyc5uO8cALAlh8gCAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgDAuLliTfIvy5KTdhjcX7Gm70QAM2IWWQCAcXLFmuQrK5ONGwbPN1w1eJ4kB6zoLxfADNiDCQAwTs5b9ZNyucnGDYPlAGNOwQQAGCcbrt6+5QBjRMEEABgni5du33KAMaJgAgCMk4OPSxYsvvuyBYsHywHGnIIJADBODliRHLY6Wbx/khrcH7baBD/ARDCLLADAuDlghUIJTCR7MAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOiEggkAAEAnFEwAAAA6oWACAADQCQUTAACATiiYAAAAdELBBAAAoBMKJgAAAJ1QMAEAAOjENgtmVe1XVWdV1YVVdUFVvXoUwQAAAJgsM9mDeWeS17bWDkxyeJJXVtWBsxlqzbo1Wfa2ZdnhDTtk2duWZc26NbP57QCAbbliTfIvy5KTdhjcX2FsBuCnLdzWCq2165JcN3x8S1VdlGSfJBfORqA169Zk5Wkrs+GODUmSq266KitPW5kkWXHQitn4lgDA1lyxJvnKymTjYGzOhqsGz5PkAGMzAD+xXedgVtWyJI9OcvZshEmSVWeu+nG53GTDHRuy6sxVs/UtAYCtOW/VT8rlJhs3DJYDwGZmXDCratckJyd5TWvt5ileX1lVa6tq7fr16+9xoKtvunq7lgMAs2zDNGPwdMsBmLdmVDCralEG5XJNa+1jU63TWlvdWlveWlu+ZMmSexxo6e5Lt2s5ADDLFk8zBk+3HIB5ayazyFaS9yS5qLV2/GwHOu7I47J40eK7LVu8aHGOO/K42f7WAMBUDj4uWXD3sTkLFg+WA8BmZrIH84gkL07y5Ko6d3h76mwFWnHQiqx+xursv/v+qVT2333/rH7GahP8AEBfDliRHLY6Wbx/khrcH7baBD8A/JSZzCL7n0lqBFl+bMVBKxRKABgnB6xQKAHYpu2aRRYAAACmo2ACAADQCQUTACZQVR1dVZdU1WVV9bq+8wBAomACwMSpqgVJ3pnkmCQHJnlBVR3YbyoAUDABYBIdluSy1trlrbUfJflQkmf1nAkAFEwAmED7JPn2Zs+vGS4DgF4pmAAwR1XVyqpaW1Vr169f33ccAOYBBRMAJs+1Sfbb7Pm+w2V301pb3Vpb3lpbvmTJkpGFA2D+qtZa929atT7JVR281Z5JvtvB+4ya3KMl9+hNana5R6ur3Pu31rSjzVTVwiTfTHJkBsXyq0le2Fq7YCtfY2yWe5TkHr1JzS73aM362Lywgzf/KV39IlBVa1try7t4r1GSe7TkHr1JzS73aE1q7knQWruzql6V5NNJFiR579bK5fBrjM1yj4zcozep2eUerVHknpWCCQDMrtbaJ5J8ou8cALA552ACAADQiXEvmKv7DnAPyT1aco/epGaXe7QmNTdbN6k/V7lHS+7Rm9Tsco/WrOeelUl+AAAAmH/GfQ8mAAAAE6L3gllV762qG6rq/Gler6r6m6q6rKq+UVWHjjrjVGaQ+0lVdVNVnTu8/fGoM06lqvarqrOq6sKquqCqXj3FOmO3zWeYe+y2eVXtXFVfqarzhrnfMMU6O1XVh4fb++yqWjb6pD+VaSa5X1ZV6zfb3i/vI+tUqmpBVX29qk6f4rWx296bbCP3OG/vK6tq3TDX2ileH7vPFLbO2DxaxubRMjb3w9g8Wr2Oza21Xm9Jnpjk0CTnT/P6U5N8MkklOTzJ2X1nnmHuJyU5ve+cU+TaO8mhw8e7ZXAdtQPHfZvPMPfYbfPhNtx1+HhRkrOTHL7FOq9I8u7h42OTfHhCcr8syd/2nXWa/L+X5KSp/n8Yx+09w9zjvL2vTLLnVl4fu88Ut23+TI3No81tbB5tbmNzP/mNzaPN3dvY3PsezNba55N8byurPCvJiW3gy0n2qKq9R5NuejPIPZZaa9e11r42fHxLkouS7LPFamO3zWeYe+wMt+Gtw6eLhrctT3x+VpITho8/muTIqqoRRZzSDHOPparaN8nTkvzjNKuM3fZOZpR7ko3dZwpbZ2weLWPzaBmbR8/YPJZm7TOl94I5A/sk+fZmz6/JBHx4DT12eBjDJ6vqkX2H2dLw8INHZ/AXsM2N9TbfSu5kDLf58NCKc5PckOSM1tq027u1dmeSm5I8YLQpf9oMcifJrw0Pq/hoVe034ojTeVuSP0xy1zSvj+X2zrZzJ+O5vZPBLzifqapzqmrlFK+P9WcK98gk/0zHbpzYnLF5NIzNI2dsHr3exuZJKJiT6mtJ9m+tHZzkHUn+pec8d1NVuyY5OclrWms3951npraReyy3eWttY2vtkCT7Jjmsqh7Vd6aZmEHu05Isa639fJIz8pO/PPamqp6e5IbW2jl9Z9keM8w9dtt7M49vrR2a5Jgkr6yqJ/YdCKYxluPEJsbm0TE2j46xuTe9jc2TUDCvTbL5XwP2HS4ba621mzcdxtBa+0SSRVW1Z8+xkiRVtSiDgWBNa+1jU6wyltt8W7nHeZsnSWvt+0nOSnL0Fi/9eHtX1cIkuye5cbTppjdd7tbaja2124dP/zHJY0adbQpHJHlmVV2Z5ENJnlxVH9hinXHc3tvMPabbO0nSWrt2eH9DklOSHLbFKmP5mcK9MpE/03EeJ4zN/TA2j4SxuQd9js2TUDBPTfKS4UxHhye5qbV2Xd+htqWqHrTp2PGqOiyDbd33P5QMM70nyUWtteOnWW3stvlMco/jNq+qJVW1x/DxfZIcleTiLVY7NclLh4+fm+RzrbVez6mYSe4tjtN/Zgbn3vSqtfZHrbV9W2vLMpgk4HOttRdtsdrYbe+Z5B7H7Z0kVbVLVe226XGSpyTZcgbPsftM4V6byJ/pOI4TwyzG5hEyNo+WsXn0+h6bF3bxJvdGVX0wgxnG9qyqa5L8SQYnLae19u4kn8hglqPLkmxI8hv9JL27GeR+bpLfqao7k/wwybF9/0MZOiLJi5OsGx7DnySvT7I0GettPpPc47jN905yQlUtyGBQ/Uhr7fSqemOSta21UzMYnN9fVZdlMDnFsf3F/bGZ5P7fVfXMJHdmkPtlvaXdhgnY3lOakO29V5JThr8/LkxyUmvtU1X128lYf6awFcbmkTM2j5axeQxMwPae0oRs717H5ur/3zgAAABzwSQcIgsAAMAEUDABAADohIIJAABAJxRMAAAAOqFgAgAA0AkFEwAAgE4omAAA/397dxMqZRmGcfx/ZQXZx6JFEkJJREXUIgr6wLAsiCLBwFoEgW0iiBaRhNQiK8IQ2gQVtGtRghURBS0MqUWgpmEflIGBmpElRmURQXm3eEeYBo825zxnDnPm/4PhPfPO+z7PszncXDPP3CNJasKAKUmSJElqwoApSZIkSWrCgClJkiRJasKAKUmSJElqwoApSZIkSWrCgClJkiRJasKAKUmSJElqwoApSZIkSWrCgClJkiRJasKAKUmSJElqwoApDSnJ6iQ1xePWvteXNJpvVZK3kuxL8meSb5KsT3J2i/ElSRp3c1Cbb0uyJcnBJH8lOZBkU5LLW4wvjbNT53oB0hi7GzgwcO4r4DPgeuCHRvOsAfYDj/fmuwpYB9yc5IaqOtpoHkmSxt2oavO5wE7gJeAQcAGwFtia5Mqq2tdoHmnsGDCl6dtVVXumeO1Qw3lWVFX/eB8l+Rl4FbgJ2NJwLkmSxtlIanNVbQQ29p9Lsh3YDawCnm81lzRu3CIrNXa8bThJFiZ5OcnhJL8neTvJDb3rVp9ovIFwecwnvePiZguXJGmeal2bp3C4d/y7wZKlseUnmNL0LUjS/z9UVfXPFNe+QrdtZx2wA7gFeG0Gcy/rHb+ewRiSJM03I63NSRYAC4ALgeeAgwx8silNGgOmNH27B55/DCwdvCjJpcC9wNqq2tA7vTnJQuDhYSdNshh4GvigqnYMe78kSfPYqGvzNuDq3t97gOVV9dNwS5bmFwOmNH138d9GAkemuO5aIMAbA+ffZMiAmeQs4B267Tf3D3OvJEkTYNS1+T7gHOAiuqZ8m5Msraq9Q4whzSsGTGn6vjxBI4F+5/eOg+9o/jjMZEnOAN6lK2LLqmqwS54kSZNupLW5qo59VWVbkveBvXTdZB8cZhxpPrHJjzT7jrVEP2/g/KL/O0CS0+jeVb0GuKOqvmi0NkmSJtGMa/OgqvqFbpvsxdMdQ5oPDJjS7NsOFF0jgX6Dz48rySl0TQeWAyuramvb5UmSNHFmVJuPJ8ki4DLg2xmsSxp7bpGVZllV7U7yOvBMLyzupAuLK3qXHD3JEC/SFbxngT+SXNf32gG3ykqSNJyZ1uYkbwOfAp8DvwGXAI/Q9UjwNzA10QyY0mg8QNdo4DHgdGAL8BDwHvDrSe69vXd8ovfo9xRde3VJkjScmdTmrcA9wKO9e78DPgTW2+BHky5VNddrkCZSkjXABmBJVe2f6/VIkjTprM3SzPkJpjQCSe4ErgB20W27uZGunfkmC5gkSaNnbZZmhwFTGo0jwEq61uVnAt8DLwBPzuWiJEmaYNZmaRa4RVaSJEmS1IQ/UyJJkiRJasKAKUmSJElqwoApSZIkSWrCgClJkiRJasKAKUmSJElqwoApSZIkSWriXzkMyEqRL9ArAAAAAElFTkSuQmCC\n",
"text/plain": [
"path
) and resolution (dpi
) of the image file to be saved, and save the drawing contents to the file.\n",
"The format of the image file to be saved is specified by the extension of the file name.\n",
"In sample code 1-5, it is saved in png format.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IG3ZjqmTfMqI"
},
"outputs": [],
"source": [
"# sample code 1-5\n",
"%matplotlib inline\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"fig, ax = plt.subplots(2, 2,figsize=(8*2, 6*2))\n",
"xs = [ 1, 2, 3, 4, 5 ]\n",
"ys = [ 2, 5, 3, 7, 4 ]\n",
"ys2 = [ 1, 4, 9, 16, 25 ]\n",
"\n",
"ax[0][0].plot(xs, ys)\n",
"ax[0][1].plot(xs, ys2, c='red')\n",
"ax[1][0].scatter(xs, ys, c='green')\n",
"ax[1][1].scatter(xs, ys2, c='orange')\n",
"\n",
"plt.savefig('./sample-1-4.png', dpi=600)\n",
"plt.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 6,
"status": "ok",
"timestamp": 1648474530674,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "Gc3A2HKolM47",
"outputId": "6056cf35-9a2f-4023-b8c6-07777fedb9e9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-rw-r--r-- 1 root root 572527 Mar 28 13:35 ./sample-1-4.png\n"
]
}
],
"source": [
"# ファイルを確認する。\n",
"import os\n",
"if os.name == 'nt':\n",
" LS = 'dir'\n",
" LS_R = 'dir /s'\n",
"else:\n",
" LS = 'ls -l'\n",
" LS_R = 'ls -lR'\n",
"\n",
"\n",
"!{LS} ./sample-1-4.png"
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyOuO07bG5wswF4fb4BdLdy5",
"collapsed_sections": [],
"name": "matplotlib_tutorial_01_en.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.13"
}
},
"nbformat": 4,
"nbformat_minor": 1
}