{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "lEMI1oxe8KNy"
},
"source": [
"Updated 21/Nov/2021 by Yoshihisa Nitta "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "X4_Pjeum8NUa"
},
"source": [
"\n",
"# Further Training of Variational Auto Encoder for CelebA dataset with Tensorflow 2 on Google Colab\n",
"\n",
"Train Variational Auto Encoder further on CelebA dataset.\n",
"It is assumed that it is in the state after executing VAE_CelebA_Train.ipynb.\n",
"\n",
"## CelebA データセットに対して Variational Auto Encoder をGoogle Colab 上の Tensorflow 2 で追加学習する\n",
"\n",
"CelebA データセットに対して変分オートエンコーダをさらに学習させる。\n",
"VAE_CelebA_Train.ipynb を実行した後の状態であることを前提としている。"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"executionInfo": {
"elapsed": 270,
"status": "ok",
"timestamp": 1637505886000,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "CnbfjOX_7wEa"
},
"outputs": [],
"source": [
"#! pip install tensorflow==2.7.0"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 2260,
"status": "ok",
"timestamp": 1637505895914,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "woOXJdh57sIx",
"outputId": "7d22b67d-2269-4366-b102-b2e16ed4a396"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.7.0\n"
]
}
],
"source": [
"%tensorflow_version 2.x\n",
"\n",
"import tensorflow as tf\n",
"print(tf.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bXj23n8r9Tac"
},
"source": [
"# Check the Google Colab runtime environment\n",
"\n",
"## Google Colab 実行環境を調べる"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 659,
"status": "ok",
"timestamp": 1637505915895,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "4xRE6QCs9QO1",
"outputId": "5ece69df-eb07-4802-eca0-0de3b00b986a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sun Nov 21 14:45:15 2021 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 495.44 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|===============================+======================+======================|\n",
"| 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 |\n",
"| N/A 33C P0 26W / 250W | 0MiB / 16280MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=============================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------+\n",
"processor\t: 0\n",
"vendor_id\t: GenuineIntel\n",
"cpu family\t: 6\n",
"model\t\t: 79\n",
"model name\t: Intel(R) Xeon(R) CPU @ 2.20GHz\n",
"stepping\t: 0\n",
"microcode\t: 0x1\n",
"cpu MHz\t\t: 2199.998\n",
"cache size\t: 56320 KB\n",
"physical id\t: 0\n",
"siblings\t: 2\n",
"core id\t\t: 0\n",
"cpu cores\t: 1\n",
"apicid\t\t: 0\n",
"initial apicid\t: 0\n",
"fpu\t\t: yes\n",
"fpu_exception\t: yes\n",
"cpuid level\t: 13\n",
"wp\t\t: yes\n",
"flags\t\t: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities\n",
"bugs\t\t: cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa\n",
"bogomips\t: 4399.99\n",
"clflush size\t: 64\n",
"cache_alignment\t: 64\n",
"address sizes\t: 46 bits physical, 48 bits virtual\n",
"power management:\n",
"\n",
"processor\t: 1\n",
"vendor_id\t: GenuineIntel\n",
"cpu family\t: 6\n",
"model\t\t: 79\n",
"model name\t: Intel(R) Xeon(R) CPU @ 2.20GHz\n",
"stepping\t: 0\n",
"microcode\t: 0x1\n",
"cpu MHz\t\t: 2199.998\n",
"cache size\t: 56320 KB\n",
"physical id\t: 0\n",
"siblings\t: 2\n",
"core id\t\t: 0\n",
"cpu cores\t: 1\n",
"apicid\t\t: 1\n",
"initial apicid\t: 1\n",
"fpu\t\t: yes\n",
"fpu_exception\t: yes\n",
"cpuid level\t: 13\n",
"wp\t\t: yes\n",
"flags\t\t: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities\n",
"bugs\t\t: cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa\n",
"bogomips\t: 4399.99\n",
"clflush size\t: 64\n",
"cache_alignment\t: 64\n",
"address sizes\t: 46 bits physical, 48 bits virtual\n",
"power management:\n",
"\n",
"Ubuntu 18.04.5 LTS \\n \\l\n",
"\n",
" total used free shared buff/cache available\n",
"Mem: 12G 733M 9G 1.2M 2.0G 11G\n",
"Swap: 0B 0B 0B\n"
]
}
],
"source": [
"! nvidia-smi\n",
"! cat /proc/cpuinfo\n",
"! cat /etc/issue\n",
"! free -h"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zeGrymCg9ZtL"
},
"source": [
"# Mount Google Drive from Google Colab\n",
"\n",
"## Google Colab から GoogleDrive をマウントする"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 24864,
"status": "ok",
"timestamp": 1637505975236,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "9B4MX6GC9Vf9",
"outputId": "bcf572f3-bb59-4a1f-f51c-bb315fd77731"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 6,
"status": "ok",
"timestamp": 1637505975237,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "P4voAIIh9aiO",
"outputId": "a7621009-b46a-4e31-990b-daf067d60055"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MyDrive Shareddrives\n"
]
}
],
"source": [
"! ls /content/drive"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cED1p2U998IE"
},
"source": [
"# Download source file from Google Drive or nw.tsuda.ac.jp\n",
"\n",
"Basically, gdown
from Google Drive.\n",
"Download from nw.tsuda.ac.jp above only if the specifications of Google Drive change and you cannot download from Google Drive.\n",
"\n",
"# Google Drive または nw.tsuda.ac.jp からファイルをダウンロードする\n",
"\n",
"基本的に Google Drive から gdown
してください。\n",
"Google Drive の仕様が変わってダウンロードができない場合にのみ、nw.tsuda.ac.jp からダウンロードしてください。"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 2707,
"status": "ok",
"timestamp": 1637506093686,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "K13qk7Td9mH_",
"outputId": "c24b8044-e953-48a7-8133-630c28eb58d7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=1ZCihR7JkMOity4wCr66ZCp-3ZOlfwwo3\n",
"To: /content/nw/VariationalAutoEncoder.py\n",
"\r",
" 0% 0.00/18.7k [00:00, ?B/s]\r",
"100% 18.7k/18.7k [00:00<00:00, 16.3MB/s]\n"
]
}
],
"source": [
"# Download source file\n",
"nw_path = './nw'\n",
"! rm -rf {nw_path}\n",
"! mkdir -p {nw_path}\n",
"\n",
"if True: # from Google Drive\n",
" url_model = 'https://drive.google.com/uc?id=1ZCihR7JkMOity4wCr66ZCp-3ZOlfwwo3'\n",
" ! (cd {nw_path}; gdown {url_model})\n",
"else: # from nw.tsuda.ac.jp\n",
" URL_NW = 'https://nw.tsuda.ac.jp/lec/GoogleColab/pub'\n",
" url_model = f'{URL_NW}/models/VariationalAutoEncoder.py'\n",
" ! wget -nd {url_model} -P {nw_path}"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 244,
"status": "ok",
"timestamp": 1637506102894,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "WmOyk35j-AZ7",
"outputId": "c3dd811f-3888-4b94-da39-98454e895051"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"import tensorflow as tf\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import os\n",
"import pickle\n",
"import datetime\n",
"\n",
"class Sampling(tf.keras.layers.Layer):\n",
" def __init__(self, **kwargs):\n",
" super().__init__(**kwargs)\n",
"\n",
" def call(self, inputs):\n",
" mu, log_var = inputs\n",
" epsilon = tf.keras.backend.random_normal(shape=tf.keras.backend.shape(mu), mean=0., stddev=1.)\n",
" return mu + tf.keras.backend.exp(log_var / 2) * epsilon\n",
"\n",
"\n",
"class VAEModel(tf.keras.models.Model):\n",
" def __init__(self, encoder, decoder, r_loss_factor, **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.encoder = encoder\n",
" self.decoder = decoder\n",
" self.r_loss_factor = r_loss_factor\n",
"\n",
"\n",
" @tf.function\n",
" def loss_fn(self, x):\n",
" z_mean, z_log_var, z = self.encoder(x)\n",
" reconstruction = self.decoder(z)\n",
" reconstruction_loss = tf.reduce_mean(\n",
" tf.square(x - reconstruction), axis=[1,2,3]\n",
" ) * self.r_loss_factor\n",
" kl_loss = tf.reduce_sum(\n",
" 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var),\n",
" axis = 1\n",
" ) * (-0.5)\n",
" total_loss = reconstruction_loss + kl_loss\n",
" return total_loss, reconstruction_loss, kl_loss\n",
"\n",
"\n",
" @tf.function\n",
" def compute_loss_and_grads(self, x):\n",
" with tf.GradientTape() as tape:\n",
" total_loss, reconstruction_loss, kl_loss = self.loss_fn(x)\n",
" grads = tape.gradient(total_loss, self.trainable_weights)\n",
" return total_loss, reconstruction_loss, kl_loss, grads\n",
"\n",
"\n",
" def train_step(self, data):\n",
" if isinstance(data, tuple):\n",
" data = data[0]\n",
" total_loss, reconstruction_loss, kl_loss, grads = self.compute_loss_and_grads(data)\n",
" self.optimizer.apply_gradients(zip(grads, self.trainable_weights))\n",
" return {\n",
" \"loss\": tf.math.reduce_mean(total_loss),\n",
" \"reconstruction_loss\": tf.math.reduce_mean(reconstruction_loss),\n",
" \"kl_loss\": tf.math.reduce_mean(kl_loss),\n",
" }\n",
"\n",
" def call(self,inputs):\n",
" _, _, z = self.encoder(inputs)\n",
" return self.decoder(z)\n",
"\n",
"\n",
"class VariationalAutoEncoder():\n",
" def __init__(self, \n",
" input_dim,\n",
" encoder_conv_filters,\n",
" encoder_conv_kernel_size,\n",
" encoder_conv_strides,\n",
" decoder_conv_t_filters,\n",
" decoder_conv_t_kernel_size,\n",
" decoder_conv_t_strides,\n",
" z_dim,\n",
" r_loss_factor, ### added\n",
" use_batch_norm = False,\n",
" use_dropout = False,\n",
" epoch = 0\n",
" ):\n",
" self.name = 'variational_autoencoder'\n",
" self.input_dim = input_dim\n",
" self.encoder_conv_filters = encoder_conv_filters\n",
" self.encoder_conv_kernel_size = encoder_conv_kernel_size\n",
" self.encoder_conv_strides = encoder_conv_strides\n",
" self.decoder_conv_t_filters = decoder_conv_t_filters\n",
" self.decoder_conv_t_kernel_size = decoder_conv_t_kernel_size\n",
" self.decoder_conv_t_strides = decoder_conv_t_strides\n",
" self.z_dim = z_dim\n",
" self.r_loss_factor = r_loss_factor ### added\n",
" \n",
" self.use_batch_norm = use_batch_norm\n",
" self.use_dropout = use_dropout\n",
"\n",
" self.epoch = epoch\n",
" \n",
" self.n_layers_encoder = len(encoder_conv_filters)\n",
" self.n_layers_decoder = len(decoder_conv_t_filters)\n",
" \n",
" self._build()\n",
" \n",
"\n",
" def _build(self):\n",
" ### THE ENCODER\n",
" encoder_input = tf.keras.layers.Input(shape=self.input_dim, name='encoder_input')\n",
" x = encoder_input\n",
" \n",
" for i in range(self.n_layers_encoder):\n",
" x = conv_layer = tf.keras.layers.Conv2D(\n",
" filters = self.encoder_conv_filters[i],\n",
" kernel_size = self.encoder_conv_kernel_size[i],\n",
" strides = self.encoder_conv_strides[i],\n",
" padding = 'same',\n",
" name = 'encoder_conv_' + str(i)\n",
" )(x)\n",
"\n",
" if self.use_batch_norm: ### The order of layers is opposite to AutoEncoder\n",
" x = tf.keras.layers.BatchNormalization()(x) ### AE: LeakyReLU -> BatchNorm\n",
" x = tf.keras.layers.LeakyReLU()(x) ### VAE: BatchNorm -> LeakyReLU\n",
" \n",
" if self.use_dropout:\n",
" x = tf.keras.layers.Dropout(rate = 0.25)(x)\n",
" \n",
" shape_before_flattening = tf.keras.backend.int_shape(x)[1:]\n",
" \n",
" x = tf.keras.layers.Flatten()(x)\n",
" \n",
" self.mu = tf.keras.layers.Dense(self.z_dim, name='mu')(x)\n",
" self.log_var = tf.keras.layers.Dense(self.z_dim, name='log_var')(x) \n",
" self.z = Sampling(name='encoder_output')([self.mu, self.log_var])\n",
" \n",
" self.encoder = tf.keras.models.Model(encoder_input, [self.mu, self.log_var, self.z], name='encoder')\n",
" \n",
" \n",
" ### THE DECODER\n",
" decoder_input = tf.keras.layers.Input(shape=(self.z_dim,), name='decoder_input')\n",
" x = decoder_input\n",
" x = tf.keras.layers.Dense(np.prod(shape_before_flattening))(x)\n",
" x = tf.keras.layers.Reshape(shape_before_flattening)(x)\n",
" \n",
" for i in range(self.n_layers_decoder):\n",
" x = conv_t_layer = tf.keras.layers.Conv2DTranspose(\n",
" filters = self.decoder_conv_t_filters[i],\n",
" kernel_size = self.decoder_conv_t_kernel_size[i],\n",
" strides = self.decoder_conv_t_strides[i],\n",
" padding = 'same',\n",
" name = 'decoder_conv_t_' + str(i)\n",
" )(x)\n",
" \n",
" if i < self.n_layers_decoder - 1:\n",
" if self.use_batch_norm: ### The order of layers is opposite to AutoEncoder\n",
" x = tf.keras.layers.BatchNormalization()(x) ### AE: LeakyReLU -> BatchNorm\n",
" x = tf.keras.layers.LeakyReLU()(x) ### VAE: BatchNorm -> LeakyReLU \n",
" if self.use_dropout:\n",
" x = tf.keras.layers.Dropout(rate=0.25)(x)\n",
" else:\n",
" x = tf.keras.layers.Activation('sigmoid')(x)\n",
" \n",
" decoder_output = x\n",
" self.decoder = tf.keras.models.Model(decoder_input, decoder_output, name='decoder') ### added (name)\n",
" \n",
" ### THE FULL AUTOENCODER\n",
" self.model = VAEModel(self.encoder, self.decoder, self.r_loss_factor)\n",
" \n",
" \n",
" def save(self, folder):\n",
" self.save_params(os.path.join(folder, 'params.pkl'))\n",
" self.save_weights(folder)\n",
"\n",
"\n",
" @staticmethod\n",
" def load(folder, epoch=None): # VariationalAutoEncoder.load(folder)\n",
" params = VariationalAutoEncoder.load_params(os.path.join(folder, 'params.pkl'))\n",
" VAE = VariationalAutoEncoder(*params)\n",
" if epoch is None:\n",
" VAE.load_weights(folder)\n",
" else:\n",
" VAE.load_weights(folder, epoch-1)\n",
" VAE.epoch = epoch\n",
" return VAE\n",
"\n",
" \n",
" def save_params(self, filepath):\n",
" dpath, fname = os.path.split(filepath)\n",
" if dpath != '' and not os.path.exists(dpath):\n",
" os.makedirs(dpath)\n",
" with open(filepath, 'wb') as f:\n",
" pickle.dump([\n",
" self.input_dim,\n",
" self.encoder_conv_filters,\n",
" self.encoder_conv_kernel_size,\n",
" self.encoder_conv_strides,\n",
" self.decoder_conv_t_filters,\n",
" self.decoder_conv_t_kernel_size,\n",
" self.decoder_conv_t_strides,\n",
" self.z_dim,\n",
" self.r_loss_factor,\n",
" self.use_batch_norm,\n",
" self.use_dropout,\n",
" self.epoch\n",
" ], f)\n",
"\n",
"\n",
" @staticmethod\n",
" def load_params(filepath):\n",
" with open(filepath, 'rb') as f:\n",
" params = pickle.load(f)\n",
" return params\n",
"\n",
"\n",
" def save_weights(self, folder, epoch=None):\n",
" if epoch is None:\n",
" self.save_model_weights(self.encoder, os.path.join(folder, f'weights/encoder-weights.h5'))\n",
" self.save_model_weights(self.decoder, os.path.join(folder, f'weights/decoder-weights.h5'))\n",
" else:\n",
" self.save_model_weights(self.encoder, os.path.join(folder, f'weights/encoder-weights_{epoch}.h5'))\n",
" self.save_model_weights(self.decoder, os.path.join(folder, f'weights/decoder-weights_{epoch}.h5'))\n",
"\n",
"\n",
" def save_model_weights(self, model, filepath):\n",
" dpath, fname = os.path.split(filepath)\n",
" if dpath != '' and not os.path.exists(dpath):\n",
" os.makedirs(dpath)\n",
" model.save_weights(filepath)\n",
"\n",
"\n",
" def load_weights(self, folder, epoch=None):\n",
" if epoch is None:\n",
" self.encoder.load_weights(os.path.join(folder, f'weights/encoder-weights.h5'))\n",
" self.decoder.load_weights(os.path.join(folder, f'weights/decoder-weights.h5'))\n",
" else:\n",
" self.encoder.load_weights(os.path.join(folder, f'weights/encoder-weights_{epoch}.h5'))\n",
" self.decoder.load_weights(os.path.join(folder, f'weights/decoder-weights_{epoch}.h5'))\n",
"\n",
"\n",
" def save_images(self, imgs, filepath):\n",
" z_mean, z_log_var, z = self.encoder.predict(imgs)\n",
" reconst_imgs = self.decoder.predict(z)\n",
" txts = [ f'{p[0]:.3f}, {p[1]:.3f}' for p in z ]\n",
" AutoEncoder.showImages(imgs, reconst_imgs, txts, 1.4, 1.4, 0.5, filepath)\n",
" \n",
"\n",
" def compile(self, learning_rate):\n",
" self.learning_rate = learning_rate\n",
" optimizer = tf.keras.optimizers.Adam(lr=learning_rate)\n",
" self.model.compile(optimizer=optimizer) # CAUTION!!!: loss(y_true, y_pred) function is not specified.\n",
" \n",
" \n",
" def train_with_fit(\n",
" self,\n",
" x_train,\n",
" batch_size,\n",
" epochs,\n",
" run_folder='run/'\n",
" ):\n",
" history = self.model.fit(\n",
" x_train,\n",
" x_train,\n",
" batch_size = batch_size,\n",
" shuffle=True,\n",
" initial_epoch = self.epoch,\n",
" epochs = epochs\n",
" )\n",
" if (self.epoch < epochs):\n",
" self.epoch = epochs\n",
"\n",
" if run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch-1)\n",
" \n",
" return history\n",
"\n",
"\n",
" def train_generator_with_fit(\n",
" self,\n",
" data_flow,\n",
" epochs,\n",
" run_folder='run/'\n",
" ):\n",
" history = self.model.fit(\n",
" data_flow,\n",
" initial_epoch = self.epoch,\n",
" epochs = epochs\n",
" )\n",
" if (self.epoch < epochs):\n",
" self.epoch = epochs\n",
"\n",
" if run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch-1)\n",
" \n",
" return history\n",
"\n",
"\n",
" def train_tf(\n",
" self,\n",
" x_train,\n",
" batch_size = 32,\n",
" epochs = 10,\n",
" shuffle = False,\n",
" run_folder = 'run/',\n",
" optimizer = None,\n",
" save_epoch_interval = 100,\n",
" validation_data = None\n",
" ):\n",
" start_time = datetime.datetime.now()\n",
" steps = x_train.shape[0] // batch_size\n",
"\n",
" total_losses = []\n",
" reconstruction_losses = []\n",
" kl_losses = []\n",
"\n",
" val_total_losses = []\n",
" val_reconstruction_losses = []\n",
" val_kl_losses = []\n",
"\n",
" for epoch in range(self.epoch, epochs):\n",
" epoch_loss = 0\n",
" indices = tf.range(x_train.shape[0], dtype=tf.int32)\n",
" if shuffle:\n",
" indices = tf.random.shuffle(indices)\n",
" x_ = x_train[indices]\n",
"\n",
" step_total_losses = []\n",
" step_reconstruction_losses = []\n",
" step_kl_losses = []\n",
" for step in range(steps):\n",
" start = batch_size * step\n",
" end = start + batch_size\n",
"\n",
" total_loss, reconstruction_loss, kl_loss, grads = self.model.compute_loss_and_grads(x_[start:end])\n",
" optimizer.apply_gradients(zip(grads, self.model.trainable_weights))\n",
" \n",
" step_total_losses.append(np.mean(total_loss))\n",
" step_reconstruction_losses.append(np.mean(reconstruction_loss))\n",
" step_kl_losses.append(np.mean(kl_loss))\n",
" \n",
" epoch_total_loss = np.mean(step_total_losses)\n",
" epoch_reconstruction_loss = np.mean(step_reconstruction_losses)\n",
" epoch_kl_loss = np.mean(step_kl_losses)\n",
"\n",
" total_losses.append(epoch_total_loss)\n",
" reconstruction_losses.append(epoch_reconstruction_loss)\n",
" kl_losses.append(epoch_kl_loss)\n",
"\n",
" val_str = ''\n",
" if not validation_data is None:\n",
" x_val = validation_data\n",
" tl, rl, kl = self.model.loss_fn(x_val)\n",
" val_tl = np.mean(tl)\n",
" val_rl = np.mean(rl)\n",
" val_kl = np.mean(kl)\n",
" val_total_losses.append(val_tl)\n",
" val_reconstruction_losses.append(val_rl)\n",
" val_kl_losses.append(val_kl)\n",
" val_str = f'val loss total {val_tl:.3f} reconstruction {val_rl:.3f} kl {val_kl:.3f} '\n",
"\n",
" if (epoch+1) % save_epoch_interval == 0 and run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch)\n",
"\n",
" elapsed_time = datetime.datetime.now() - start_time\n",
" print(f'{epoch+1}/{epochs} {steps} loss: total {epoch_total_loss:.3f} reconstruction {epoch_reconstruction_loss:.3f} kl {epoch_kl_loss:.3f} {val_str}{elapsed_time}')\n",
"\n",
" self.epoch += 1\n",
"\n",
" if run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch-1)\n",
"\n",
" dic = { 'loss' : total_losses, 'reconstruction_loss' : reconstruction_losses, 'kl_loss' : kl_losses }\n",
" if not validation_data is None:\n",
" dic['val_loss'] = val_total_losses\n",
" dic['val_reconstruction_loss'] = val_reconstruction_losses\n",
" dic['val_kl_loss'] = val_kl_losses\n",
"\n",
" return dic\n",
" \n",
"\n",
" def train_tf_generator(\n",
" self,\n",
" data_flow,\n",
" epochs = 10,\n",
" run_folder = 'run/',\n",
" optimizer = None,\n",
" save_epoch_interval = 100,\n",
" validation_data_flow = None\n",
" ):\n",
" start_time = datetime.datetime.now()\n",
" steps = len(data_flow)\n",
"\n",
" total_losses = []\n",
" reconstruction_losses = []\n",
" kl_losses = []\n",
"\n",
" val_total_losses = []\n",
" val_reconstruction_losses = []\n",
" val_kl_losses = []\n",
"\n",
" for epoch in range(self.epoch, epochs):\n",
" epoch_loss = 0\n",
"\n",
" step_total_losses = []\n",
" step_reconstruction_losses = []\n",
" step_kl_losses = []\n",
"\n",
" for step in range(steps):\n",
" x, _ = next(data_flow)\n",
"\n",
" total_loss, reconstruction_loss, kl_loss, grads = self.model.compute_loss_and_grads(x)\n",
" optimizer.apply_gradients(zip(grads, self.model.trainable_weights))\n",
" \n",
" step_total_losses.append(np.mean(total_loss))\n",
" step_reconstruction_losses.append(np.mean(reconstruction_loss))\n",
" step_kl_losses.append(np.mean(kl_loss))\n",
" \n",
" epoch_total_loss = np.mean(step_total_losses)\n",
" epoch_reconstruction_loss = np.mean(step_reconstruction_losses)\n",
" epoch_kl_loss = np.mean(step_kl_losses)\n",
"\n",
" total_losses.append(epoch_total_loss)\n",
" reconstruction_losses.append(epoch_reconstruction_loss)\n",
" kl_losses.append(epoch_kl_loss)\n",
"\n",
" val_str = ''\n",
" if not validation_data_flow is None:\n",
" step_val_tl = []\n",
" step_val_rl = []\n",
" step_val_kl = []\n",
" for i in range(len(validation_data_flow)):\n",
" x, _ = next(validation_data_flow)\n",
" tl, rl, kl = self.model.loss_fn(x)\n",
" step_val_tl.append(np.mean(tl))\n",
" step_val_rl.append(np.mean(rl))\n",
" step_val_kl.append(np.mean(kl))\n",
" val_tl = np.mean(step_val_tl)\n",
" val_rl = np.mean(step_val_rl)\n",
" val_kl = np.mean(step_val_kl)\n",
" val_total_losses.append(val_tl)\n",
" val_reconstruction_losses.append(val_rl)\n",
" val_kl_losses.append(val_kl)\n",
" val_str = f'val loss total {val_tl:.3f} reconstruction {val_rl:.3f} kl {val_kl:.3f} '\n",
"\n",
" if (epoch+1) % save_epoch_interval == 0 and run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch)\n",
"\n",
" elapsed_time = datetime.datetime.now() - start_time\n",
" print(f'{epoch+1}/{epochs} {steps} loss: total {epoch_total_loss:.3f} reconstruction {epoch_reconstruction_loss:.3f} kl {epoch_kl_loss:.3f} {val_str}{elapsed_time}')\n",
"\n",
" self.epoch += 1\n",
"\n",
" if run_folder != None:\n",
" self.save(run_folder)\n",
" self.save_weights(run_folder, self.epoch-1)\n",
"\n",
" dic = { 'loss' : total_losses, 'reconstruction_loss' : reconstruction_losses, 'kl_loss' : kl_losses }\n",
" if not validation_data_flow is None:\n",
" dic['val_loss'] = val_total_losses\n",
" dic['val_reconstruction_loss'] = val_reconstruction_losses\n",
" dic['val_kl_loss'] = val_kl_losses\n",
"\n",
" return dic\n",
"\n",
"\n",
" @staticmethod\n",
" def showImages(imgs1, imgs2, txts, w, h, vskip=0.5, filepath=None):\n",
" n = len(imgs1)\n",
" fig, ax = plt.subplots(2, n, figsize=(w * n, (2+vskip) * h))\n",
" for i in range(n):\n",
" if n == 1:\n",
" axis = ax[0]\n",
" else:\n",
" axis = ax[0][i]\n",
" img = imgs1[i].squeeze()\n",
" axis.imshow(img, cmap='gray_r')\n",
" axis.axis('off')\n",
"\n",
" axis.text(0.5, -0.35, txts[i], fontsize=10, ha='center', transform=axis.transAxes)\n",
"\n",
" if n == 1:\n",
" axis = ax[1]\n",
" else:\n",
" axis = ax[1][i]\n",
" img2 = imgs2[i].squeeze()\n",
" axis.imshow(img2, cmap='gray_r')\n",
" axis.axis('off')\n",
"\n",
" if not filepath is None:\n",
" dpath, fname = os.path.split(filepath)\n",
" if dpath != '' and not os.path.exists(dpath):\n",
" os.makedirs(dpath)\n",
" fig.savefig(filepath, dpi=600)\n",
" plt.close()\n",
" else:\n",
" plt.show()\n",
"\n",
" @staticmethod\n",
" def plot_history(vals, labels):\n",
" colors = ['red', 'blue', 'green', 'orange', 'black', 'pink']\n",
" n = len(vals)\n",
" fig, ax = plt.subplots(1, 1, figsize=(9,4))\n",
" for i in range(n):\n",
" ax.plot(vals[i], c=colors[i], label=labels[i])\n",
" ax.legend(loc='upper right')\n",
" ax.set_xlabel('epochs')\n",
" # ax[0].set_ylabel('loss')\n",
" \n",
" plt.show()\n"
]
}
],
"source": [
"! cat {nw_path}/VariationalAutoEncoder.py"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "K29zyLNo-JG-"
},
"source": [
"# Preparing CelebA dataset\n",
"\n",
"Official WWW of CelebA dataset:\n",
"\n",
"https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html\n",
"\n",
"\n",
"Google Drive of CelebA dataset:\n",
"\n",
"https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8?resourcekey=0-5BR16BdXnb8hVj6CNHKzLg\n",
"\n",
"\n",
"img_align_celeba.zip mirrored on my Google Drive: \n",
"\n",
"https://drive.google.com/uc?id=1LFKeoI-hb96jlV0K10dO1o04iQPBoFdx\n",
"\n",
"\n",
"## CelebA データセットを用意する\n",
"\n",
"CelebA データセットの公式ページ:\n",
"\n",
"https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html\n",
"\n",
"\n",
"CelebA データセットのGoogle Drive:\n",
"\n",
"https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8?resourcekey=0-5BR16BdXnb8hVj6CNHKzLg\n",
"\n",
"\n",
"自分の Google Drive 上にミラーした img_align_celeba.zip: \n",
"\n",
"https://drive.google.com/uc?id=1LFKeoI-hb96jlV0K10dO1o04iQPBoFdx\n",
""
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 20130,
"status": "ok",
"timestamp": 1637506176166,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "g99ZWERz-DP8",
"outputId": "62a1e72f-154f-4c4b-f00b-275f79503df9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=1LFKeoI-hb96jlV0K10dO1o04iQPBoFdx\n",
"To: /content/img_align_celeba.zip\n",
"100% 1.44G/1.44G [00:06<00:00, 238MB/s]\n"
]
}
],
"source": [
"# Download img_align_celeba.zip from GoogleDrive\n",
"\n",
"MIRRORED_URL = 'https://drive.google.com/uc?id=1LFKeoI-hb96jlV0K10dO1o04iQPBoFdx'\n",
"\n",
"! gdown {MIRRORED_URL}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 13,
"status": "ok",
"timestamp": 1637506176167,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "xXFiRu9y-QSj",
"outputId": "65bdaf54-4f9e-40a0-9124-56c6bf8c25f9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 1409676\n",
"drwx------ 6 root root 4096 Nov 21 14:46 drive\n",
"-rw-r--r-- 1 root root 1443490838 Nov 21 14:49 img_align_celeba.zip\n",
"drwxr-xr-x 2 root root 4096 Nov 21 14:48 nw\n",
"drwxr-xr-x 1 root root 4096 Nov 18 14:36 sample_data\n"
]
}
],
"source": [
"! ls -l"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"executionInfo": {
"elapsed": 260,
"status": "ok",
"timestamp": 1637506709488,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "0SnX7ijr-UBg"
},
"outputs": [],
"source": [
"DATA_DIR = 'data'\n",
"DATA_SUBDIR = 'img_align_celeba'"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"executionInfo": {
"elapsed": 18168,
"status": "ok",
"timestamp": 1637506735151,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "CeMWTJWeAXVq"
},
"outputs": [],
"source": [
"! rm -rf {DATA_DIR}\n",
"! unzip -d {DATA_DIR} -q {DATA_SUBDIR}.zip"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 1999,
"status": "ok",
"timestamp": 1637506737138,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "fDN_8kaFAZPV",
"outputId": "09c85014-f7cf-4a4b-80a9-5da2d03f1e31"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 1737936\n",
"-rw-r--r-- 1 root root 11440 Sep 28 2015 000001.jpg\n",
"-rw-r--r-- 1 root root 7448 Sep 28 2015 000002.jpg\n",
"-rw-r--r-- 1 root root 4253 Sep 28 2015 000003.jpg\n",
"-rw-r--r-- 1 root root 10747 Sep 28 2015 000004.jpg\n",
"-rw-r--r-- 1 root root 6351 Sep 28 2015 000005.jpg\n",
"-rw-r--r-- 1 root root 8073 Sep 28 2015 000006.jpg\n",
"-rw-r--r-- 1 root root 8203 Sep 28 2015 000007.jpg\n",
"-rw-r--r-- 1 root root 7725 Sep 28 2015 000008.jpg\n",
"-rw-r--r-- 1 root root 8641 Sep 28 2015 000009.jpg\n",
" 202599 202599 2228589\n"
]
}
],
"source": [
"! ls -l {DATA_DIR}/{DATA_SUBDIR} | head\n",
"! ls {DATA_DIR}/{DATA_SUBDIR} | wc"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JTblqnRqAvLW"
},
"source": [
"# Check the CelebA dataset\n",
"\n",
"## CelebA データセットを確認する"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 809,
"status": "ok",
"timestamp": 1637506845329,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "DR3yVPDZAuRw",
"outputId": "4680c5f5-0eb3-4e08-b512-490a9bcf2663"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"202599\n"
]
}
],
"source": [
"# paths to all the image files.\n",
"\n",
"import os\n",
"import glob\n",
"import numpy as np\n",
"\n",
"all_file_paths = np.array(glob.glob(os.path.join(DATA_DIR, DATA_SUBDIR, '*.jpg')))\n",
"n_all_images = len(all_file_paths)\n",
"\n",
"print(n_all_images)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"executionInfo": {
"elapsed": 2,
"status": "ok",
"timestamp": 1637506845329,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "OmuBX5z_A1qG"
},
"outputs": [],
"source": [
"# slect some image files.\n",
"\n",
"n_to_show = 10\n",
"selected_indices = np.random.choice(range(n_all_images), n_to_show)\n",
"selected_paths = all_file_paths[selected_indices]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 107
},
"executionInfo": {
"elapsed": 721,
"status": "ok",
"timestamp": 1637506846299,
"user": {
"displayName": "Yoshihisa Nitta",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgJLeg9AmjfexROvC3P0wzJdd5AOGY_VOu-nxnh=s64",
"userId": "15888006800030996813"
},
"user_tz": -540
},
"id": "RABvNE7zA3nl",
"outputId": "63e14d31-9936-4e6c-827a-1297abfc97a7"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxcAAABaCAYAAADKDqsTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9V7BkyXnn90tzTFVd33a6x88AGMIM4QiSIHdBu5RIQeKS1IpQMCitGKuQVlJIL3rho0IRcm9aPayJlXa1WtGAEncpgsslQAIkMSTGwIx37b25pqpumWMy89NDnjK3+7aZ6dsNLOP+O6pv3bp1zsmTJ/PLz/y/L5WIsI997GMf+9jHPvaxj33sYx/3Cv3dbsA+9rGPfexjH/vYxz72sY+/Gtg3Lvaxj33sYx/72Mc+9rGPfewJ9o2LfexjH/vYxz72sY997GMfe4J942If+9jHPvaxj33sYx/72MeeYN+42Mc+9rGPfexjH/vYxz72sSfYNy72sY997GMf+9jHPvaxj33sCezt/vhPXx4LwHy52vgu2iQ3lrG9XVnbHedo3osISqnbHnu3n4sIIkIAUDdeb9Lund8FEHXD7xJP8N/+9UPqljdzl7j82js7+k8phUJxK5tu0hfTdgKCgrnPlVKx3+bOMTlONa9bYb4d832/27XfD+bPceBDx+/phN77HQ/4/bXvTj0ywaRfmt9uGFt70Tc3XfE2c0Vrfc8XPPHCN6YXmDxvAdjl1Ep29tKN42TyPn439qlH8AhGKULp6A+6BD9msHWVYtAlzSy1D1zd3GBcDKkrj1IZH3jqoxw7/jg6TRgXYxaWljDW4iUgSoMLJGiM0vH6GpS6c7nsyRxWSvHUD/zgPfXfK2dOSFor1tc3+O1/8Vv83m/8Mw5bwyOHV1BKsTUYcqU7YGNYQqb5937+b/H9z36St155jouvv0zmDBe6m5zd6NE5coz/7L/6r/n4R5/l5Luv80df+i3seMzxJz7C089+htde/iZvvfUujz/5Ac6dO8/Ro8cIXlg7sMZTTx9nff06p06eYrvbRQF5lmJNwI+HLHdyev0+Fy5fYb0o+enP/zw//lP/Friar/zLL3L2rVdI0VzpbnFho8uo8vzyF36Fz//cL1CUJV9/7l9xOAmkZc03vvNt3jh1mW+9ffme+u7k6XdERBCtQCtEKYLWBCzGO4yv0UoQHRDRgJmNLaVABIVCKxXlZfO61didHDc/nxQKjd5Vnt54jsn5YeecVEqDzP6mtd6xTuwmEw6vHbjnebu9vb3LYFcgiiCeEDxFMWJjY50i6fGHL3+ZrLPADx76IXqnRpS55tFnVznTv8TxlUcYntrkwBMrnNg6w6HFh0iCIseS+Zx3XztJ++mU71w6yWeffpb17kW+fuZ1fvajP4G9ZKlVxUayzssnXuaXPvcFbDdhYTWn1WrRbrfRWsfXdF17/xAROosL93SSP//G7+9JXX2tNYhGqcnYVIAgOEKoURiszbG2TZrmpMaQGMhMlFsoUCHwzTdf4//4f36LRGnS2lNWAz727EfY7G5w7vxFtgdjkjTnQ898kKIcIhLI0hat1jKb1zdJfJcDR4/SPvYBvEoh1JR+RFkNGRZ9tkc9xsWAuq744v/yB/c89pYPHZLEJmhtAYXWhjRNAZmO//F4jPd+2k9aa5xzOOcIIVAFF3WoENAolEAIAVE36xtKabQ2aGUxJkXrBK0sXsUeX15a5cjBQ6wur7G40GahZVjMcpYXFlheWaKz1EGUYVhUjIuC0ahgezii2++z0R1x9fJZLl85g3MFhEDwHpHyJv1Ta83GxsY99d/jP/NJUdqQpDlrB46wunYQERiNhlB7jh06zOPHHubA8goqaDZ7PS5trHPh8lWMTTiwssbK8iLXr13l+pVLlKNtyvEITUCLwlUe5wOmrXHGU/qSNMtAG4qqxgehKitwHq319BkppbBByGpBgsdqRZoY2q0caVvILc5oPApjDBqDWFhZzDi61uL4wQ6LmWAMjGvF1Z7n/PqY7qCgchWQ8uI/+v1d++62xsX8QJg+DBR3O4Pf7x4auwnwG5XhW11DKW7RPuHG5uz2PaXef7sfHPZe2b2rq86Ng9stsnuBWz3v+4X5S92orNyf693fa7zf/rtTu4QbZEDzJtwgsEVAwsxgF0BJXKQmc0zr2wRORXY+lAeIyVWtNbRaLYw2cYEUQTULqlLR6A/eMx6PAUiTdHqOuPAqqqqkKApEhDTNMMYgItR1jUI1i/esP0IIgMI7j4hEgT9RsEM0EKOyHftHKYUxFu+GlOMC7xypMaR51jha1LS9QYThcEQIAWst1liCLzDGYI3B3u553CVEKQISjYQQH6FBUDrE5240LniUKLTSu8pkNTGEmSn/ImHHd29cG3ae4+6cXDvWtZvGWnMWmTPO5wzYWx93H3DD7WitsdZiQspi+wDdYgCJwSHUVY0ee4wXQqjBQOU8qWmTVTnDfpfFtQOsrKzSXlxAkoqxG3Py3ElK18PjQHk2rm2QdnJaB3KCBycBrW92OuwVHqSsvxMm8usmTD68wfBVisa4ivdglMIF4frmBkVd0u4sUg2GtNo5xmrKqqSua7SyJEmGtQYpJrJRAwKhxtoEk2aI0s2ZAyIekagoh+AI4pEQHki//JsCEWbOtAeE3vYQbQxJ4tBJhrIWYxOcq0mUJrFJnLNK4yRQe0ftPUGEVGmSuXUhhNCsA81a6sNUBkQ5HuJom5uHIkKQcEcqklLMrV+30IFRWKOwRrBG4rVE4YPgfMB5IQiI0tM1fjfclXExj2Z5m97o5MbeC27lOd/tPDcK8vdyrR3flZujJ/NnehAK5V7h/YrhvYxU7ObV/quEB3FP73f+vJdzv9/jbqc4xfZK/DeneKkdxwlBBJko5QCNYJsYDYq5BboZ1TPp0hgyk8X2AUMBxloWFhYw1hAqRwiCsQpj9LTNIYSpcZGkyVTx0FqjUNS1YzwuECBJEtIkoRSZevuSJIkLRggkSYKEqGQ4Hz2BxphoYGiND27q4Jm0USlFklhUEOqixDuPyVLSPMc3i5NWGtMYDuPxOF43TbHWEEqPNgnGWswekGSDikaPhDCNiKkgKDxBReMDNMF5lGlUphBuil7AzU6McIO82RERfp/j/VbrSjPEp4Nxvi3zx01wP+XFvKE1+ZnlGb7y5GmHcrhBKQUjN8C22/hxjdWagAMdx0vAw0LN8tICZy+cZiQjtsIWS3RopR2eeerDOL/N6W9toSqFXlSYtkHlIMZDy6PqmWGj543sv0LYMQ7nMNEXRAQ9+c7c/U+MDAAVwNU1G90u46okWz1IUVW0DnYQ8ZRFgfeCiCZNM0TAe4+10flQlSUEj0kNSdZClIkKZnCNQeEaWRDw3nE/nI3zUfwH/ohFQE36dtKpd8lBuGGe3n4N2zu4okZpjys9w+GI61ev0llYpNNeZCFvMRqP8CFQ+pqq9pSupigLQDBKkyYpzvs542LOkIfpGqobhX4y9iZ3IY0HLwaNwtRZFe8zOmdUswgbYwAw2uDnx2+zHhttMBrSRKHxaGUQYWpYON+wDJS+bT++Z+PidngvCvrtFKvJeUII0w66KfR9F9faSefabZDtjGbc0mPxvYapp+R9HLoHkuJ+0apud737d+77dur30Ia9b8Q8jWOHt/UOx934/du1bfadiXATvPdToyB6UyZaGo3S3Sjl38XIxB2haISsJs9zEpvgx9Hjj0QBH40kCBIYj0ZNZCJtlGOmBkFR14xG8dgsTUmzlBKmNIIsy4CoXBhjqF1NnlmCD9MIw7wSF72UJjo3m0iKMRYlUI4LXF1jzAJ5K0fpaJhpY+J7EUajIVVdk+U5aZpRD6OnLUmS6aJzL/DINNJCmESropwVBV7NojrBB3RjqM3Lan2jRy4E1G50vhvG6PxY1bfy4e0y5G5cV25cB26iBj4guXcrhCDRCBVNYi2OmoW1Nsvft4zDoBgRJICGshyTsIaSwGaxTmYs/aLPGodIkpS2WaLDMrbIaFnF46tPcCA5iF1NsTqls9bmR78fVu0ySZ6RpnY6Jmf4Hp3H9wFKKZSeOERmdz6vnGmBoizY7G5FxdAHQvDkeUoIntq5RnnUtFotJh5qYzTGaCoXCK5G6wydpPiGlqWaqIWfRC2CAwJ/pQMX/4YMLSk92iq0DVF+1RVUFUkqUHk2Nja4srjIdrFAqAJFGelZWZphtEaco6odVVU1a4OfGgY+hLimaj0zNBo5FXyYrfO30HLnodSMznar9VcrjTWaxILWgkYRQozG1T7gQ8ALxNjKrXFb42KHZ3+u2btxsm91J4FmgWlCOZN4gWqsLATQekqdkMZx5YNQO9d822KtwZr4R42gEJTEn4EQj4sn20HbkNj4u3J+zu7l/nqhdj/7ba45i8ZGugEqduBN37nFOe76dubuX+bcMDQKzfwp5xZgpSKnEjEgFvB3e8E74t4X74kBebMnXsWPZ9+bfKd5SPMUn92MW9jp+fxe8uKFOQEkEm47PGSOSKJk4m5WNwoAGo5IpNsgKAJ1WTLodultXmPY32J76xpWC4hnMBzRK7ejx1/naCP4qoRQU1UBrRV4B9og6OmYlsYjE3Mt7rxy7jlFQxSiFUprOnmLJE2oAd+MC60jdV8Rx8aoiMqcTVqgE0R7jFIYBcFVFOMhwQdskmGTDBHBuxoJniRJIh3KB4zWuNqhW7pRIMJNHuKpjCRGhXRjBAlRoamrOnKls1aUq4GmLRoExqNxpGRpjc0yxl5Q2pBauye0qCCBGVd9MpFoZHXMpQgiMWrRGB9Kx+MQA804mBwtIvgQzzkJ+uv5OJfMFLvJ5aL8j99tYiMzGkHzzGQ66uNBc+bC9P9dKQP3e47LjW/UznVTqSaaZVHekamMcW/Mq2++ytHkIQ4dPAZBs5Iuk4eMOmmxeWmTRx9/hHEYE0rH9z36YSgNK+kyR1qHaT29SttZxGk+9cQnyKqM5VaCwZK6hA8eeIZ0nNG2bXQajb+d/X4zC+C7gVvJgVs352aZvtNkmD/fnJMEhVJmOi+1ViABERVfWjEoxmx0t0i0ARUQFWgvtCmqirqOxoUC2q02dV2BCjgfaOmEquhFSkrawthWHL0q9nEgEMTjxUelU9Suhvf9wE5nLZOpTZOG18ilCe5DmybrEjJ3+uaJzSl8KgqOvb/+bRBcADwewaYJIoqyrClsgVaawWDAybNnUImlk7U5sLzG8tISB5Ysmc2oy4pQO5KGBut9ILFJXI9dQHxAJwrENzJTIURjEwkQIg3VCjFCPNFnBLTENS3K38aZYxQ08pDJGGoiRUZrrNYk2mDURIIKIQjOTShbAcI9RS5mi00cTGouXtx8fgdqjBiF9oIO0RDwqlEXVBOuUUTFVEEVoCjrZvJ5lNbUtaOuAoRAajVZYshTS5alTfNim5QISkmc3KFp8UROKAV+t2jJLJQ585TdvkfeD25Saud+39l/Nyu/859ImCiMt5u6u/1lPrR5k8Z4Q9sAUcjUmGgGkjI72ht/aTyUamLkQTRC7t24eG9Uh5v7bn4x2Cnydu+faO3KjKLRHDLxCu1GwZgPwe5mcH9XjQ09lxeh5pL/m583LRTz71Xk9NupgTmJ/Cm8kkh9qUu61y/z5ivf4sLZU4z70ajIspSFTgdrIrd4s7tFv18QfIa2OakyXDh/BueFLE1YWl7l6KNP0l45SJqahprT9K8KKBxRTN25L++FHrPjPIBrPEWtNMOmKQMNTuLcMwhGCUYrCIpxOaIKNSbtoGyL4LZJUCQqehuL0YDgPNpk2LRFkNAYWS7ycLWJEQdtqCoXIzs+NFQJM2dcqFk0SEcqlW4MB1EwKhrjAkuS5ohJkFBjlCZBYQSKoqB2NWiFSXNq0TPjYg8iFxCiXCAaReKjBFFhMoLiQuYRrDeId2gl6GZpEZnlkzRnQ6norQ8qRjzieGw8hDRc40kirYqePiWm+XuYGsZaaQgmKoI7HvhMfkRHwmS+7O5Eu6+R1MmV5xxKSoGXGXVMa4O1KQmKDz/2LKurB0jzlEWzhB5rjCQcMYuo0iCZMB6VVJc9abuF1YZ6WOLqMe0sZXCth1GKojFic2fwOpB1IkUnSRISayNtLjEYHRUUrdSUHrQXhsWeOAhkt2vLdGWaX+93lycKiAa52ul5mq4PcWxMEpEB8SA6Km2A1oqawOZgm/FoTNskVMUQMkWSp4yGBc7F82oDeZLh/QDRNaI7IAlqkt+StFC6hQ5RuauZFK0JeIl8/UAczw8SkaIYCEQny8QFNHEGaBX1urtx6N71Naf/mP6Mn0+UZ5lzYkQ8SJp7EE9kMun4YLUhiIJiRB08Vml6owFJp0Wx6FhcWqKlMxaSjHbeoUwS1EiwawewItSdBQgeLVBmQ4bFiFoq6lATvODKmgRF7QISNN4FCAZDICgh6NhHiYAN0biI6doKUYLXUTcPjezTTBw7kUKbaEuibEzwVhonHu/A1TQRM48ij7rALbCntKgboRCSED3HQVk8UCvBKRCl8XVFZhXiSorRgH5vxGB7hLiKQW+LrY1rDPo9jHeMi4Isa7GydoDOwiJHH3+CzuGjLLRaGBKMgAqR8zsvTGBO8btLa/p7KfdiN8NkVwGuuMnwm36+881tIU00KF5CAwmRhiHTxXt27uZ6IQMxaByoMVr2LnKx15BbTYbGUHAuen4Balcz6A9RStFqt8nSLCo3Oi4kEqTx1KodHMfvpQjGrXBXbWz6KqDwzBaParTFK998nlde/AvG3Wu0rKKzaFheXWRpqYMPQr+/xcbmJuubBf1+SV1pTJIzHA05eGCZ5bZlOBrhgmb1oUf55Gd/jOPHjtNpdeIC3uRayF3M2r2mqUzyGnRDi2q1W2yGQJCwIyQ9uVZRFHjvdtBFtDFoY5C6ZjgYRkMhseStFpMci7p2UzqSc44syxmPS7RWOOfx3pNlKcbMRQKaOa7VZKzphloEVVni6hoQsjxHWwNVHWlRTXuHoxFVVaG0Ikuzhp8LSZLePsH+LjHxGgoBUQY0UyNIRCAElNKYhl4ioqm9x5h4fwqPUzI1qGQidwgYCegASsXotYRA7RxFWTROAU2SWNIkpWViJRVlDB6FV4qgFaJ8dNLAtPLZ/JiZ8JWBm57zrWTv/cyZUhPrQnb+zVqLqQNZSDmYH6CoSpxzmEqDDYyGY4xJaLdbLCwsNkaWRxtNliRTq8Wi0RLH+iS/B8AY24y7SNWJyrTCmpvzLN7r/NvN+bIX8zbIbueT5jlP/zL9fPp7Q9FUTdtuNw+Umh8XehZZ1LOx4YNns9el1+/R6bSpxwPyNMNaS1mW1K5mwm1PEkNROJQxKMx0DbJGk2RpdPRIiBGLINNkX5EZHeZ7f7W5d0QjQk1fJsSfMY8reuuhiZ58FzrE4xHnMQjBGJQRxArDssY5RyvLSEyGlBVVXoHVZK0cY1KCEnRiydMWiTL4sqYqC7LEIkC9uspaCDhfs7FxnbIqca6kqmrqsmRcjCmqCqU1QQeCVfjGCaBEoQIx50KrqbNCqUnk9ubOslaRJBpjzZS5EQQqL9RuRr5S0/Vod9yVcXGj8JwI/ZuT4GS6cE68v0o8giEoE33goUTqmmo4ZtTf4uL6FS6cepvrly/S31xnPNxmvN0jlCNCPUZ8TV0HShdQSYvW4go2a5NkC3z4Y5/mI5/8JEceexy7uEiwFisBFZqCryrSQ259+zdXkGIX+syDwG7Und3e37ZtMzm5q5K723O88fOJL0opB+hpzHNSSm7nwtAYccGgxYAqgQGuHgKP3+WdP3jI1M+iZpOjSY4rq5KyLOl1u5w4eZLuRp92u8Phw4d58sknWVtbm3k+G2XJNeNddDQ2Jkm6tzI07kgnfMDYdUyJxKo/xKRtRPDBcen8aV567iucO/E2qZQspYFDK4usHT3MwvIKPgiD0RiREh8SQihQRJpPUQ2ofUUnDxxsdWibmu2q4sSb3+Li5Qv82I//DT7x8R/AJlGpiWWYp3btA8NkwY4KeEqe5dFL6MO0v1TDWRWEqiwJPpAYg7UWJ7O8AhFiMp/3ZHlGmqZT2VnXNXkrJUlsk3Nhm5BzvGfv/VTpmwj5CQ933qBVSmFQuLKirmtAkWQp2pqpJ1E14fCiKCirClCkacIkOT9JbIzE3CN00/jozZSpoS4Sq2ApgNB4NzVxbXACAawGweNRTUhfMChUiCQn8TVbm5ucPXOKyxcv0Ot22d7YYmt9g6qqEYQ8yzj60FEeefQRjj36KEeOP8zKwSPYPAct0bmgVeOdNjNf6C1k5gS7GRb3ew7vUJCnUYuZ0dXOYgQhTyyVrdFi0EEjymPsxEhoCgKo+Gw8AkYjOnqXbdDoxpCenH+Cyfsbc3Hm1//dFPE7rZ/3qx/rSURAz6JYkQ4ym7eT6N/OdkgTrb/T2inQlDjWc9GtKC9mFeScCBtbmzjvSYxluyxZW+mgtaYsS1ztUEqR5xnaKELwaGsxOokRgVCjEkWSplFxhul8ijlIfkdFob3EjZrAzn6ax230lClhQKYUxDtdTRqnRDytmkYbmRwvzCyHJsKp0LOPafpn0jQ1m9MTx+GOu7sbfeo9wCcKah9pvlUJqaD1REPyWA2p1aRJQitvUdeOqq5RDpyqGQzHDDa2qcoSX1eIdxQNnbMYlywvLbGcL5K0NelSgqv6BKmofM32aJv1rQ3WtzYYBMEZEKPxolCiCQ39lMRik6QxNGZt3+EvVmBsU7jEziJ9PkAtijrMXPezft0dd12K9tZ8xvg37/1NwkYUOBXLVtVlRT0esHH5LN0r57l24gTnT5+ge/0So94GylWIG6NpavEaMCpOpGEF1guD7U2665dYWF5DTMabF85w8ht/wrOf+xzLjz3Owx96hrXVIyhld8SVbx25UTs69n56oG7Xf7O/39ordneUj0YZvOlSuyu4u59CR4tU1TRFJQmiUCrlRi+fNJPb6ArEocKIsugi6t7DtPfNwJNIVfHOEXz0fFZVyfq1a5w9fZp33nmXq1ev8s4776CNYWOzh1KaJ554gk996lP8wi/+ItZarly5wsULFzh9+jTXr1/n2Wef5TM//MO0O+1plZ/b3cv3enRDANEaCTVaHKPeBi9/80Ve+fYLDLtXSDQcOrjC8SMHWVnqoFTO+vVtzl+6zPpml95gxLisKOsSX4MPBi9C7Qou+hEtfZi11WWSqibFs3HpLL//u18EF/jUpz+LsoBpHBQ3tO1BKXkKRZIk5K08GlthVjt8ouQpFFVdU9UVeRoTox0zhR5gNIzRgs5ChyxNUSp6yJ1zWNsmSRJG4xpjYinaCY/d1Y2H09omOXtqEkelQ4TENBU+lMaVVTR0EGyWYpKESR7RpL1VVVEWBYiQJMn0Xq1NsHtQLkpHG6JZ9Cf7DqlpREMFhVIxMup03AMDkxB8TE7VyqNVghYwKELlGA4GbK6vc+Ktt3jxhW9w9cpljFbUZUHmFFJHKpnzjrquOfPqWzzfMnQWF2kvLnL0+HE+/slP8uFnn2Xt6FFsmhHQDb3MxDVgLiI1H52C2xsd9xM35nzNwxiDThTG5PiQIGljdAJeFNo0xRNUVHImY3WiYk28u7rJYJk4BWfR1/k1Zxb5n1Yq28Oow171baApIhGY3osCTCMeJpQ6rTTCrHrO1L8kAH4uMnGDg0hNFLEolKIDwWDMzuTYsq7Y2NxsopEZ/dqz2F6IDpaiaAwDSNOM0FR90jrDmISqrBA8Jol0zEkOaiDO90kloVmETTWG+73jxvsGmUYE4cao3uy5GWOmhTy0NOVJZ17O215TRGaRhubaWrGj77XWoDXBGLAWbALWomyC0qC9x1g7K1xxU6WpW4+vu9Or7gKdFClqpA6R6GHAaUEpQ6WEVAsmTem022Q2wRcVvXKTartgY32DXm8bqlh0w6iYJ5ckhkQZpPaM14fYJKEsKgRFqh2JFfJWwqGFFY4uLLO5sMz5Xo9uOWJQFdEJ2jwKHxxKHFp7xHiscTFX2cS1RSdx5zRtLcbGbp7mfAdwXqiCog4g0uRIT9aqW+C2xsXEizaPHcqlzJe74qbJKCJsu4re1ibb17eoNq8xunKaqydf4erpNxj0uxhxHOmk1OWYauwRiZVUjMkwxrJ6YJnlqmJclhxCs9Xto8KYo0eWqKsxV668wctf2eLw8SfZePnbPPEjP8XxD34fJkliksp0cN+9AnI/jYx5z8nOz+8Wc36AXaIuIczKmU3OnSQpxthpHf343Mz0mPk2GLFo5XC+oHJDgniMTjHpwdkwmghjDCgI9PFuC1+OSU1K0jr4Hu/pPuAGGgE0i7UEfFlSjMcMBgNOnTzJCy+8wPkzZxiPRmxtbXH+/Hm63S42SdDZAs571q9f58K581y7chVjLS+9+CLXrl1jaWmJoiz42p98lX//2lX+g1/+5ZvoUbeKGN1P3Ooau45t2eVXpQhKI77i+qWzvPDnX+bUmy8T3Iijh9ZYW12h3Wpjsoz13oDe5jkGgxGjoiZQYxKFCZqUjEoCrvT44EF5tseON05e5KGDIx49/hCrSwaRAYNixB/8f79HCIaPf/qHSFo5c7rNXPvmKA033Oue9q2CNE3ptDuN0nIzXUYpRVnGvSxW29FQGDfHzpd/raoKYyLNKpaVDc1nhiRN8YNits+FignOzkcPZzKtGBXvODR0KPH1tA3WGMqypCxKggTSPCPJUlzTXm2afTfKktF4hCAkSTrt2ySxJPbecy6mDsfGaxgITQRHNbzoSDlTIjFy0eRRxFiFQ+GxZLjK0d3c4k+/8se88JfPs7m+znB7QJ6lSPAoCZTFGFfN9gux1k6VItka0dvoopVw6eS7vPXS8zz82ON86kc/x2c++yMceOhhMIagdeMiueE+bhGp+F5wCigVk7pFR2XOhhiBESWICgSfNEqZoFRgUhNYiJWMos83fhyUijXr5wyq6PmfJMGzc72RWRtm2N0x9qBRlA6lZ7kgQWLEaxqfaMaGR6FUIExtglnbQ/BTxXlnVEai0m80YLHO47WPOQd64mmPwmpYjOj2e9Fg8x5EyLIM7/30pZSl3W4jEq832UzOhYogHm1MLIEtMjMsJDTGhY8Vw0SiYbJHYzJGSW2hlnIAACAASURBVHUTlZkv2KKm+/NM+kQRq9BNfhcRqCcRhDAzRCRWNguEHXNqRiub3YeEmPiOjqVPq6qO+4FojU1TknabrNMhX1ggX1wgW1ygZTVpWWGTFJ2kBKWovGdcxkp8xlq8VxNraMc93UgFvCd00uY5BnRi8akGozHNpoCFd1Te4b2nGo2pgub6lXUunDpHXTmsTTHSQgPWaLLUEhKLtxZRhiTL8DbBJxnXNzZRPiHRGjtwqCtbLLUTjh4+xjOtZS5sXefqsEd/sN3MX4l5FInGGEWTnoZ3nqquo5NYFZgkJSlL8laKcwbvonyk2eOicoHah+k+RreLScEdjIuxKxsBM6nP0SQ0ao34ECuQOEGLQky8qKujFwyBwXDMu+cuUPa3WAoF5aV3OPnC11i/cBKkxBVjirrGFWnDyTUobWgvtOLAVAEljmMPHcKYuAT0+9uMxmOeevIhrIZ33j3DYDRg48SrFFcvsH7lLOvf/yke/einOfT4B9E2iQNeC8hkMxIVQ+M7I2VT7JVxsRu3NE643ZSg3a4pTEJ7E0dARJOs21TgAmG7P8C7IRvXr7I9GCAiXLx4kUuXLrJycI08b/Hoo0/Sbi1y9MhxFhaWMIlhWjVlQokINaruQ91DZzk6acdkfF2AZKiQRgoUgUwqlHQZV1sEcWTZCtYcoA7ZnvTf7rh7QapENVWsBB88SkNdFoz7Pd5+8w2+/qdf5d2332DQ71HXju3BkG5/QG8wjBsXpZYQaoJ4tkcF26e3OXn+FO1Wi2F/GwSSzHD06FHefuttvvjP/y8++OijfPoznyFt5ZHjrcGq5M6NfQC4ZfSMWXRPALSKlZHqbS6eeodvfPVfc+3CCRJVcfDIAbI0JbGGdic+51ae0HnoCFVVs9kb0N0eMxhV9IdjhkNPXY8J1PhQIwRMsASl2dzcpi4rnn7qCYwCv75JVWzytT/+PZbXFnjiQx/G6pxEEibVUmY/J37amV+VyVi+135qMhWVMtg0I1/o4JXGeSBEmo5VoHSsUlc7T1FUKG2baIGKiXRNbG9cDONupkqRZC28USipkapAq2j8ex/QzaI6ebk6zn+b0CiKBkShPDHnAIfGkikhtYrKxc25CIrU5CQ2p5Iop1OJpRaqUDOshkAgNS0ksRSqwhqD0feegqcbT6SWSVkHTxAD2mJ9QPkYkpdm+5Lo9A0xSuqF3vY2V06/y3defplvf+fbnDl5knIwRHtFXQnjzMT9G0JNZi2LnZzFhQ5pami3Mpyr6W5tMagCLsS0w9F2xWDkGA1Osn55k1NvvMlf++mf5EPPfoL20kE8GlFNRAVplHFBZKZ03Mmw2EvV+k60yZknvdH81cRcAKVsE62Yq37HfDRGxyovRKNia2ubV197nRPvnuDq1ausrq3y9FNP8uwnPsThQ4emsQolEufFfHGIKSXgu29YQFPCOEzonBGxhs9MmZ0Y6EJMcBURtAFpFPcmFtDckYuK++QgIvccCdRUWJoEV6WoFFRVQVXXXNjcZGNjg3aW4VxJSDS206aoairXFEcRQzvvRENDYqWuNIdxOcSKIbUZic5xwWJUgFCipUTER9qUeFQIWImOir1A1m5jkwSlYpRZgsQogNEoa9FaxQ0xVSyUECsMRUNEGxNd3b5CeY/WCu1jFaPgfaTozEVFYlTJoJRBo5sNQgNBeaKeqalqx7CoqIJGTIZJ2uh8AdVegPYCKu9gk4SQ1KQmI7MtchLyYMhLRZK3MImFMj7CQCA0kSujddw41Fpscu9yL9MpdQohgUpplDGYyeaHEnPoxtsDKucxynJi/RTXL2+S2RapTbEYVLPpZdLqYGwba5cxScaRpx9j5IVvf+d1Vhcy/sZP/xQfeepxtjY2GZeOYw8d563XX+Pc6dMsLyxzRFsWFlucO19RDD3eK3SmsAqsgSyzBAtKSpIArlY4UQQvlEnFVr+inQvWjFnMExDD5iCw1VMUxRgnggcCkyT23XHbXt2qyxj6U9PgaaxO0oxlg4mfa41xgVDXBCylOK6sX+HsuVMsBjicKN59+XnefuFrjK6dw5cj8naOq+q4Q22I1n+r3WI4GJIvduj3uyRGo2khdUk7X8IHT2tthSw7wsrKEq0s5cDqQc5duMZrb77DcHuDNNRcGvS48NrLHHjmY/zgz/1NpLOEEgONf2yGSfWH5rcZk2pPMAtrz3k8uV0M5WZjZHqc2vk9CU2DxbO5cZ3f+Z3fxldjHn/8EXrdHt3uFpcuX6bVaqGs5zunz/LHX/kjnn7qgzz11AdZXV1jbXWNh449xMLSMiZJQGmCDBG3iZYSTxtRCyij8SojVoDxQIGSEVW1TRgNEZPQ7hxATAcnCeG+LjZ3d26BWOqpcdFpFRPlrly5zMsvvshffP3POP3u29TFAAmOxaVVRsZQ1SVpntJaWGJclhSj6HWug59oQvR6XYxAlmVcuHCera1N2u02F86f43/+H/8HvvCFL/ATP/1TrD10hKB09N7Okxy/S7i10jKJ9wvaKFwIII7LZ9/iz/7oS6xfPEduhXarE/mfC0scPXqUhaUORoEOgbJ0XL26QX97yJWrm3R7Q7ZHJaUzOB+jFi6EWAI10XTylEOH1jh8cAXvSxYXc8q6w9X1LbpbV/nKH32Jv7m2yuGjD6O0nehQO0LoN46FvQ04RoXCJAmtdgdlDC6ulVEGGh3DxsTKTmVZNveWIirSlKyOnPiyKCiqAgSytAXWIHXAVzHykKTJHOWKKTXKuRjJ1dpOnTsSmn02lKWum4R3FdsSvKMqxgTnSJOUdtpiSMBgopdLKQrvGIwHMQckyVHW4gkkSbo3O3TPPZNJwp8EBcpGz6GKZMuYgOmhSYIcdDd5+/XX+fOvfpU3XnqV7nafsasJATKbxMR3BeO6QLQntYbFpQWW2hlrK0scOrjG8lKHTjvDO8f6xjYnzp7nnTPnqR3UJmU86jMYjtkc9Lh07TIfff11fuwnfoZjT38g5hVN8nwaf/eUgnYHSmszWh4IdqwNYqYO83njISD4pm5yVVX0+n36vT4xz8ezvT1kY32Ls2fP8dzXn+fEiZMURRm97CruTP/MR57gv/wv/nM++8M/SGJNNG61RrBM/NM7QhnfAwaGmS8CAHM/o+efuSRoY0wTGQQVJnkMHi8hRsYa8RKL1zU6jo7zOphAr9fl4rnTDLb7KDSnTp1mc3MLpWB5eYWDCx0WDGxtbaB9zRuvvoZKEhSNbDCaLNUUVYHRFquTWGJfAolJMEkGxkZqqoRGkZvsyB1fRmmcl2mE9F6RL65EL75SOzZyM6opIJAKKkmbYhJxrNAU3zBB0Gl0IHnnoHbgAqF2BO9IJgXMZX7vpSauNDGAlcRIjsRxLEEYDIcMxyPWgkTnTZpjslb8mWTYPAOfIjrF64LSQ6vypPmILM/Jspxy1I/3IpP9RAypTUhsrIRm7b33XyvNQetY0auhxeogBBcNKyNxc8Sxc2yud+mub7PQOUCSpCRZFvNuFKgkpT8seejIAX7ycz/KB596gsvXL/O7//prHF5I+e9+/b/hr33iGZI04fL6Fv/yS19Bpxmf/4VfItQlLSu88spLfOlL/y+PHHqUi+UFSnwsYpUobK4xucZrQbtYyk85hcGAD6jE4L1ie7vAUDPIUgKWzb6jO4SiKqlDoHKOoNRtqbS3NS6uNDt9TurdGqWwKoa0Y3gwbu9itMYGwRUOLY7xdo9r50+wpCoOuwEnX3mVd55/DjfYItWB9uoyytq4qVTzmgzmI4cPkecpVgtVWVCOxwxEoK554oknCCGWaBz0epzd3KCzuEyWJhw9fICz5y/SGw1Zy2Cx9pz8s9+lt3GFn/4P/1NYPETANInJISbeSOBOuwzeC26MWMzCgrfn+d0qz2LWzmjsBXFsbV3ni1/8Z7z11mscWl2DUJJnGYPtHnUxIrWaw2sH6a5vcvKdt1leyPB1n+1+n7qqWVk9yI/8yOd45vs+xvLKGonZRsIm4oUsfYhK54jToDyKCsUY77rU5QbBB/LWYdJ0DSet6O0wDrMH3uP3j7mcEw3SCGPvak6fPsVv/8Zv8s7rr1OMh7iqppV3WFleoj8cM6pqFpdXMWnK+uYWvX6fJG3FRbWu0ZPVRqRRGsdYawneUYxHBOc4ffoUf+/v/a+89vpr/Ed/59d47OmnEGMf+Nr7nugbalIbW6HwaFWzuX6B5/7kS1y/eIqWMWgfqIYljz/5GI8+doyF1SWyPKUqxgy6PS5cvMq585e5fG2dzd6IovKxTKKKfkAXBBfi2M/Q2ESRJIpDh9cIfszW5jrtdou1VdjcHnHl4nleeO7P+Zmf/TxZJ2WSvKfUbk6C93HPd9kv1lha7TZKx3J8QQTbKBlGGTQQnKMoIq0pydLoHdNqmohdVhVFUYBSZFmOMQlSxWpRoEmzlCDRFxSNC482k432wOgEhUVCNJCL0pAmGiHDk6CSnDTN6fUGFMWQ4Csya8nSDAS0UVGG67gz9nAwpK4daZaT2BTvK7IkJd8DWpTMJbpOGP6TpFpREHTAqxjdSCQgVcWJd9/lhT/7Ot/+xgtUozGHFjtoAle3etRoqlohKpAnBnGRjhEIbGx22e7CxQsXaeUJBw+s8Ogjx/jAU0/y0WeWOXy4w9GHVnn7xHmurw+pXcBXFeONinFZcP3aNc68+y4/9fOf5+Of+QxJ1gadEVSMOWlx99wf9xNKTUo0C1pHZb+qSl5/4ywvvfRN3njzTa5eucr169cbCl7cU8U5T1lUjEZjQlANJ1tHw0SEqhJef+00v/7r/z2/9p/8Cr/4i/8uK8vtib09pxzubM/d0n3vlIf4fjHJ+5xQeOapi/PXmy9GEw15wTmPcxVFXeB8jeCjd15JUyUrJU1SEmPpjoZ8+ct/yLkz56irQF0LVRkYj0sOHTyMEsvm9S1GoyEHDh7gwPICaZ4jRjEaDVhstclTi6ZAKT/1mJRlifeORBuSvIXoWIUo6BDlp8xXi5pFpsIe9WO+sNKU1G0iwE3fNP73mEuobdOnTVRM6Vj5M0CaOmrvcFVNsA5xHmdqfF2Cr26izydpFg0TE8ex94L3ocmRidSvYjxkOOhTFGOq2hGDKQZtLNparGlyLZTBiVCUFVmWkaVp/JlnkW4KaKOxOsr0NLEkxpBY01SquzcYm5JZg3cFSsdtE3DxmVF6CIJBs7m1QXF5i6XOKqmJlQK9eGxuKcuCeqxIzAI/+2//LL/6hZ/lyFKGlJ4f+czH+foL3+ZHP/0RdDng1ddf4esvvkLaWWQ42OJP/vgdHnv4GI8+8hAfe/aHOHr4cf7hP/jf+OAHnubilTMMa49JAypT+CSAVaQ2jXulaAiYaCzYBBM0xQg268CGKilDzbgKeB+put5HBkJiDZ3s1qyM2xsXIxWTq7WQaEhU5DBapTB4Eh1D7YkOFKmi1p7+ydP0336T1VBQ9a7xrXPf4czJdwmuRoWaxU6bIBB8IGus4OCiUJAQGGz3GG4LnXaLRx8+TmINC2mssqIRVleXWV9fZ+P6NS5du0K73yfPOxw+uMrm+jXOXbnCStWiXdY80c44882/5LVsiU/88q/hkxzfDGSl3E1RhN0qYO0VpgLufR4/E+gKmoTkYrzNc1//Ki+9+JdIqDi8vEg1GjDsbdHv96mKIa4cc+HsObLEsrLY5tL502hiPXxrEt59+1WOHjlEVZccP/Yojz2SY8oe7byFUQXeD9EBEnUJ7yvKcYGvAq2sTdpZprYrBGmDZKAdQn0Pd7mXELxEA7K/tcXX/uSP+Z0v/jaXzp8ntwnLK0u02x2cqzlz/hImbdFZXKW33efcmbOMi3FTKs7E0p1KkTbc9+AdCsELKPEQYp3oOtTULvLBv/EXX+fgkQN84Vd/lbWDx6KSp28u4/igcFNy4hym24mpeD/VcJNvPfcVrlw8QSvTqKokTVMee/xxjhw9Qitv4b2n3+/j6op+v892v8d4NCSxlrXVFVzQlLVnUNSosorR89pHPm0QyqJgfWMdrRzHHjpIVVWMxiOCWJY6bQZFzbtvvsL3fegDfOjDn8KmGZOdqadazn0aZ3HTv3h6Yw3tVhttDK7ZKVVoqvA0HHYJQjkuECBJ02lVl8nzLsuCoiiQIKRpjjUJlcTNtDS6qdIUqOpiSnswxtJut7hw/iKvvfoaly9cpK5i4QRroJW1OHjwQHSW6JSjR4/RWS4IvsTVI/I8Y6GzgNUaJUQPnTbgfLORnqedtUnTjKoc0Uly0uTejYuAnhkVkXwDEkPonrhhnlEgITDcWudPv/xlnvvan3Ll3EWkcuQ2ZdwfsTUY0h+N8VgS20Il0B8OqIInVIHUGlJtSPKcVpqQ5yn97QEvvfQdzp09xw98/EM89fSTHD50gAPLS7zx9jnOnL/KuKwJHgb9barxkHLYpzvYYLi9xWc/95NkC2ugTCzb2GTTfi/kWdwKE4qPiGY8HvGbv/lb/KN//EU2N7tTbr61hjTNUaqMcmAyjhsutTS7RU9yebRRoAy9fsnf/wf/hHPnzvN3/+7f4dDBA2g1U9Dv1C27O8buHyZJ3M7NG4Uz42JahGGaTxHvWwiEUFFWJUU1oqoLSjemDhWiPdYYcp1hVIvMtnn9tVfp9rZReoFz58+xcb3LpGT71aslr799EhGPD4K1CcEHFhdbHDm0xMEDKxw/fjhSvxXkec6oiLkF49E40s8EUDHfAiOE4PAhJqrHnI05A2MP0106C8txvItHfE3wjlDX8X2IORGEEHNZYoIBWltQTVU3NCiDsRCUwSvHpIyAMHFIx/yoJInJ2M57rE3QKu6z4H3AAkVRUdWB2lV0uxuMRkeo3EGq2kUngRDNHqNJdNx7JHGxdHeSpKRpRp7n5FmOtRZfVxhtMFY1FFBIjMIaRbYHtCjlVUMbC2gdsKYxzBILlWCdx40Khlc36JicRCcYZVACxmgGgx7jsoLQQbKcj3/yk+TtHK8CkuRky6tI3uGf/Na/4K9/+mM88dhjfOQjH0OnOUGBr2vOnzvL9VHBZnfMxSsjfulv/cf84//9f+KJx56k2+vRd13IhJCATg261qgMUAqPIViNSiK9zQWoxoEqeEbO4ZVglEcFhzGBzEKaBJbbt57Xt+3Vb3XHtBJLKzGkSshtDK1bpUmBtoKO0STBR+9db4PelQscbWn0lSucfe0F+oPrpARqJeSdDj54BMViZ3FaMWU8GjMejdgebqOIhkWeWKxWHDl0EHyg293Ce4fSsLyyzFZ/i5WVZcqypru1wZHDhziw0uHaVsKo9mx7zUonJw1XufL6n7Nx4gc4/szHGYnGNeH5WJVlboDssUflVovS+6keNG/4bG93efk7L/Dtb77IN196no31qzx09DDDQZ96NKIoC6qyYjweMR4XjMaxvKpudji/evEaJrHk7Q6jouL02TN88+WX0cbww5/8ED/+6adJVhfwchFUj1DXjMMmPkCSL9NeOYI2q3hyREyTs1FE33KI9bq/O5h4RqAsa0IoOH/uHL/9G/83f/B7v0c1HpOnCdo6tjYcde1w3rO8vIzOcq5eX+fatSuMRiMWOm1sYqldFKy2USZTbePGMzpQV1GBtIkheB83R/OOqiwY9Hu89PzzPHTsGD/+M/8OKyurhBDL1O6Wi/MgcKvF3jQxCwGUr3n7Oy9y6Z1XyVNLMRyxkGc8/OgxVg8vYTJFURYoMfG+G77v2vIiS50O/UHBerfP9rBCScCZgGhPwJEqwYe4m2nR1NbvdrdZXVmm01miLHv0e9sxz8GmjPpbfPvFv+T4Yx9g0ayhTUwukynX/O48pe8V075RMSrbarewicVVrlGQY+nXycsFoRgXcZfuLI37oGiZJgs65xmPRgiQpTlpmkGqyLMWFy9d5vz586Sp5dSpkywuLtPtbnH84Yd55dWXee3VtxAP7bzFyvICWapiRLcMXFvvUzpot1MyY+i0Wmz3NtlYv8Lxhx8hT3P0hIahIweYIAy3BzjnsW1Lu9VhPNzAZJa8nd5736lI49A0ivmEOiMxcmFQaBe4dv4CX/zn/5QXvvENQh0gQFU5+tsFDk0lAdvqoEJAvMM5h1LSbB4GtResUgTRiIobVq2sHkSWl+l1t/j6N16j1xvx0Q8/yWNHlumkT7LQtpy9vMmgP8a5GDnq9wfIyTP8/m98keHWkJ/4uc/TXju0I3n/QWI+4fXOcJGyI4YQ4GtffY5/+Pf/T7qDGh+IWQU60uqci0qhIlaPQgneOyQ0FJRJwq1Rsa9FkWpD7RT/6g+/xvVrXf723/4Vvv/ZZ7DWYK2J1Jj3eF93+uxesHtZ3Nl8jonUasf3Y6Umps5N52tKVzAqh4zdgFoqEqPIQopRyzz/3Nc4+c4pDh9eY2VhlR/6gR/ipRe/ydVr1xGpI7XMapTWHDhwAGtTRqMxWSulPyrpjy7RHw5ZWuywurzAwUOrXL12jeG45vChwyykCdu9LfT1TdLWEp0Dbez/T9ybBtt93vd9n2f5r2e9G4B7sRDgAlKiFkuyFVmJk/Gi2HFrx+M6dl23cdtM08l0m477oi/SyUzf9FU7k3Yynjat09RyotSxrFq2LFu0ZO2iJK7iCgIklnuBu9+z/tdn6YvnXACUSEoyIfvHAefgkLg4/+c8/+f/W76LA0mCa2vuVu+CxbXdo3XMkhisDZLWTYVrSmzTIBfcTkXgVDnrFhhUiRWhEA1thADX9ot9phEBkqwVUdwLJYZzRHE4ZxQ+GHcu4N1CgPAOrQR5FhNFHo+ibSvG4xFLqzV1a2ispbWLAsOHfaQWe1IrjdY6mD8uphdqQTxXYmF+egx3I8hdx+oeFBeNB2FQIigxRQt+r0CQJwkpmp0b14iMIMoShIrwPjTqTVUxPzyiReO8wRrDP/3f/invevgiJ0+s0F89wUc//sfc2jtCtXOc+SX+1l/7IC9/+Um2dveYFnMeefghep2UvaoBGzNqZmzuHPAP/uFv8Ae/+9s8tHGBzekW+/YoeOUJBdojUoXSGu8EVnm8lni1mCJ5T+sDD8ZiQToS7clj6MSCPJEMe2++Jm+5qtesRVqDqhwaR6zCJCNRmlQIut5zIkvRbUOnmCIPd1nRimp/m2uvPMl8fgtpBFnWwZdFILMsOoFJkjAajTg4OCBJEqRSpEmCUoJBf8Bg0MMaw97eHqPxEXjPysoKPdGnMjUnTp0k6eS89upr1FVJU5cMel3uXz2FTroUTUS6nMMgZtLscOkbf876mbOI7hro44foXTfl617em5v17hLl7kbrHaLd9/4zjpUnbm7f4mMf+22+9a2vg7PMZxNs27K/u0/ioZtlAVphWkxd49qG+WREmmXEUUxVO2aTOXGSMZ23zKuKS69eIe92mM3nfPKPrnHtuSf4dz/yo5y/6ImSnERpZHyGNMtwUUItcwwdhE/R1oKqEKIJrW8bIeQPsrj4zsLvNqHXHz9IPG3b8NJLz/ONx7/GY5/5DJPxmEge+z0v5OqkYmW4TLfXY3c0Zndvn6Y1pGlGp9MhjjXbB5NAThPHcpqgpSTrZBzVR8SRpmkakjhBaxUOZ9NSlSX729t8+fOfZzSr+Xu//Mv0B4PbD4MfdMryOhWPN4i74QLSHXdAPbc2b/DSM09BU1A1NYPhgPtOr5N3UlpqTNEyzJdJ0xSEJ+p0WO71acuC2WRKns2Jo4g9OcLbFmtAoYmkXHSiwLtw2HsnMa3n8GDE+fvOEMclnTxjXlZID4mKuHnjGi+//ALvfs/7yTsDjt0SPN+dZPsXDn/HJkgqRZZlKK1xVbP4OwPcKYjEhE5wWc7xzhMlSTDEMjYoQekI4xzT6RRrLVEU0+8vUVFhjOP5555nNp1SVfVCIhaWl1d58YXnef7FbyGI2Dh1lne+4xFOnliiLMbs7+9zNCqYzUqOxjOMTzkx7CCFYGtzk8c+86f8xE/8FGmSoHVELCO0alBSkiYJ89kc0xqk1CRpzrg1gCDJ3r4Qg1vw8u6u/fzCsCnQLCw3Ll3md/7P3+LSiy8gvaBtLFXTYp1ARosHr2kxuKCc4y0oFRIR2+IB6xzWeqazAtO2pEmEtYblpR6DwTLXr23z1NMvMT7Y4d2PPsgwT3novjWiOGZ3d8Js3lA1DY2tmY8LdtqbPPapT1PULX/nF3+R3soKnug27+KuzfEd79xjss8bh7/z4vYnkLeV/fFe8qUvPs5s1gQxBhn27rHUp19M/Nwx3dnb8FrcScClEAHaKjzOm6AM4yRtI3jqqRe4dfN/5kM/+i7+7s//PBcvPkA45r/T5vKvUiUPgoGlX6glOh+aAYI73hzH1pzWBmtQ6xzGhOlBXVdUdUnRzCltwbye4toaN3E8/uWXOdyrmU5KblzfZW0p4+yZdU6tDzhzboksTRgMBsRJGrhCSUaa5Ozs7NLp98mXejR1zeHBPpPxiKtbe+zs7XH69DrjScnV115jbXlALAW3Nm8xr1rOPwxLa6tEIkdh8aIB0aIUoTnWOoy7N6a1sRSURUE1G9MUU7AtSnj0sVEnAuvDDBIC5NjYYDVgXJj4hokCYVPJcEYGnxWNMW2AVREMBNMoTA2C50yA68lUUTclWim8NzhARzF1XTCbTanrQeBAtoa2DcpbYfIbYKhK61BkRIo4ioiTgHqpywLEwr9ILPRrfBCSuBeUlXpeYESDUSXC2QClkxFSR+QyZbpziC8aUhXyIy8lSktM23B0tIepSywRXmsa4XnplVfodU/y7h/6MM+/8hw7O7ukacaPfvBD/Ozf/nEORnOeeOUGX/jqN9k9PCDPv4h3LU4aYqX57/7r/5ZB+jBrg2V+6d/T/P5H/xlrD55gOiqonEW4CCstREHmV8kIGUka2nAueIfxButbEAYpPXmesNSNWe5G5JEnEo5O8hfkXIjxHKTACDBSUi02i8bgVUSqFeN6ygntmVrHivf0j26yc+kJ2vk+wgukBqlBRxLrPU+kPgAAIABJREFULIlWlMWc6zc2aeqGKIqppnOUVGgcS4MhpzfWgx5wkoCAo62rHOzvMSumDId9tMxxjaETp0gkp06uB/yp1CyfOYVUkr2dHSgTlI0pCoPbfI7dqy/Te/cJnHeoxanqxN1QKL/o7tybcJLbCSmETR0wq9yGTbzVlMQDVoJwlnI25rlnn+YTn/g4L1+5glWKyBTYasZSJwJncKamLB2RjrBNS6Ji0k5CL4+pnWdazEB4hp2ELEvY3juimI6I04h5GRElQ1pKvvTiLV6++Sf8wi+k/ORH/g5Rbxn8kEaE0XNVN9TNER7IkoQ0SvE+5vDogM3NLd796Hvu0Qq+2ap8+zvH3b7QMWmbip2b15lPZzz3recYjcZk3Q7WGJJOhzzv0O8PGA4HjCcTdg522dnZw9uWNNLkWcJSr89kMgpYeKGCuo0ELxzeCyIZoVWEt+CMR6Wa5bxHGzVMx0cMe11oG+Z7O/zpH3yMTDX80q/+GmlniF+oR739fsl3jzeEQX1bUt5KjXCG8mCTF5/8c8rigMoZlrodzt93Dik9VV1C7VheOUHS7yAW4+RISYT3OOXRzqJnBdo15JGj7UjwOfN5Bc4GOIZ3CKXQQhBHCrkg8dV1QRZrqiJg64u6QkYe2WquvPwsZ8+dJUo7KBUt4DZ3zHzuddLiTYuIYiBIFeadLmmSU48KXGsh0gglQAuQGm8qiuIwjPSTHjaOaKxHRxG9OMG3hnI+YTo9oi5a0nyDpWHE4e4+29evk6YZ9WRGlmXUxZy5Vlx99TLSOjZOr3Lx4jmMmfGVrz7P/v4BSsXkWQaLtdvdHTOepAy6HWgNWwdX+cP9j/PQxYdI8z7CWqK4ppPnlHWLN5a6mOGR6CTHIrEe0ih/22snuQNJcYsdbgGvILaO/c0tfvtf/BbPvfAM1kbU84pUC9aGA3QUU1QNTdmQSE3pLBUGi0FJ6OddKuvwCKSxSGfxUlHWBq003jiK8YzV1SEPPnSaG1evsXfU8OwLV3nXO8+z0otpSk3kIm6YGQiQNqOgoSxqqs2bfOmzn2P15Co/9pGfQuarYQLjwn7zi/P7bt+kv3QAaKiqF93qBI9FyBZrPePJEd4JooWyIj4kbYhQjHkXpI1DbihQYrGPWcjOL5oe4dHowDucV3ihmBYNzdY+k8e+wfMvbPHv/8ov8tM//TdRqllUJ6//mD8oXsVbxiLJDHjGBUfL34Ej311k4Y9bFOCcwbkFGdlCC5TWMCvnlOWUxKe8+OQ2114e45zF0+KIubk95+b2JaSUAY6jI1rTkneCAEGn06GTd2jahl6vx8psiFKStZUlhv0Ou3s77N46YDy+QZalzOZTOr0c8gQlFNtbNzCm4sFHHuLk+kkkEciMWHjqJMO0htYYWtfck+Uz00Pmh/uUsxG+rYM3Q5QgdbZQ81yovVkXJoiEgsJYT2ss1ntAIaVCKIX3IohRSEWkIjpZQiwFSjiUhFh4up2UeVEGaJoKKIAoVti2JRGCeVPT0FBWlt0tz2Cg6fZjmjrDlDk2EfhIBBEZCTJSqFijYomKNXGcoqI4jF3CWAVvHV6FvRmaFG9fzdFSYb3BtjZMVFHoOCWVGZmRbG3vBsib0qgox9HSmIqmgrIs8GKORqPZ4K//9Z/jV/7DX+XixQeRwrI6VPzU+x+msXDi5CnOrQ15YG2Zd/+j/4jrv/Rz/Oa//Nd88rHPI6IE6xpqGp56+hn+nb/908yaORsXH+Hsuz7M5tWvc7KTcWs+pkq62NQilAFtELIlThTSGqz1tMLjVPiepIBOHnFqOWZjNWWpo/DW0jZB4+bN4q19LuoGpAx8o+BsEhJe73CqxUhBrAxTaejND2kPbnH9xadxkwPa+QTlJUIElnykNbSe+WzOZDoB7+jlMThPmqd0sg5JqpDCkUSwsbHG6uoqTVNTNRNcU+FMy2Q8Io00SinSKMgQrp04Rd7pkuU5w2Gf8fiI+dEeTVWiooTWVgjj2L/+KsOL78elAwQSsXBaPj7/vBdI79/CdO/7C+2OD7ZFdwledxC/KQZ+8YGkAOFa6qrk8ce/yqf+6I/Y39tFCcF4b4ee9rz/4YcY5hnlbM726Ii6Kkl6MUkWsN1xFFHNZ1gHSicYZ7AeprMC7yz3r6zRSbvcGk3Ybg6xQhBJydVbB/yzf/7/cOnGPr/6a7+OcjV53kHHEV/+0pd54OJDeOd4+to1PvjBD5JlGePxhKtXr3L+/HnWOH1vFvH7CR8ekrPZjDzPufrqq3z98cdJ4phuJ8Nbw+rKKpGO6Q/6zGdzbly/QdsECJkSgixNOL2+jreGw7YNRFil0FIFnKn3KB14F9HC9CxPE4R3KAHrZ08z7uV085S2aZjN5/SGXf7Nxz7GcHmNj/zszxOl6g1H+PcyvhdC5e1wDtsWXL70Are2rlNVc9Is5cLZ0+AdxWyO947hsI8zlrquSZMYnYaRdtu2tG1F25ZYLFJpnJU0laWoGsqmpapNkHL1gTSutUYJT6RUmLb5hRa31lgviBxBptoV3Nrc5OjggLy7Sm+QBhzvYmrwg+iGHis34YMfTLfbJctySu8w1i6gFHKB3Q3ylvPZjKZpiaKIOImhDB4WOEeepLR1zbeeeRZTe5Axw+U1jg5GOC8oqxLrgqKW9Z7d/T2KsiDvdekNB7x46SVu3bpFmqYM+kNineCco21rqqpESkFZVdRFQao03rbMijlFMWdt0CWLYvJul05t2CsP2dvdZTafgyRIORJ8NY7hCm8nxN2vxPErHxok0ymf+8yfcvmVS1jrKOuKbjdnbZDTScJeGvZzRoXhxvYu8zJ4dkhAe4VygljIwAOMYJAG2UxjDWkEWoY2Q13UnDq9ipYwH4+I44SjoymdPJDWTy4PAc3m9gGuaILDtQPTtGzeuMHnPvNZ7rv/Ac491EMnyWLycjx9/k6foh90+nz3DvfcmTpKHNY2GNfSNp7BcAkdRVgRxACOny/H+PzX+f2IBRzK32WYt0i3pVzMMf3i2eUdxjR4bzk8MrSN4fd+7xO8/wOPcuLEACXe/D78y4SVqdu8xru+ozvbMFyPEHe9H14fo3yEkCitUTaoNwmnSGRKOarY292/DZU7DnHc5vBQljWFrxACyqoCQKsx8WKiPS9eQymBjhTLS0P6gx7veMfDCKe4ceM6USxASMajEq0yuh1N5lPmxYxLL79IlifkvYxMa1SakkVRIHd79x2f6y8ak6NDpuMRpi6JFQgVVPqMMWDM63w6EEEExDoXigu7yHIUREoH7w+lEVGCxjGMPZKWSIASjlhJtBJoXxGJmiRJqZoWnCV1AqUyVBSRSMOkqqnqlsN6jxdffI4oy+n1lqjblraNiAzBCM4LNAotNLFMSXVOnnbodTqYKsE0Dm8WLufWgvVIr+6JSt7iZgkyt16iiTG1xSnLwc4Bbd2GCX4c0DnGWFrniPUQuShMHPBjf+vn+M//0T8mH0RMZyM++i//Of/Ff/yrPHz/GS5v7fLPP/pv+I3/6j9judtDJBErGykf/NEf4Q8+81gomnyDl4ovf+UrPHDfg1x88CFefPkyFx68yNe/8kkefuQEygtMWWCFwGuL0D6Y6zkQyqPNwjTRh6lQlCYMuprlYczqcoeVboxrLbNZQ922b7okbz25OO5kePDm2ATl+MAxSCzOTIkzQXp0g9nlZ5EHm4hmgrBNkN/yAWceyIgenOPEygpSepIoQnpPpCS9TofusEOapxTzOZ1M8eCF08xmM7ZvXmfY7TLo9zl7ep35fE6edzk8OuDM2dPEccqZc+eCsUxbkMqW2fKArd0RjfQgJIe7h+Sbr6Lnh7RxPzDjj+XQjjHwPhQY92rMLfwdCNTd2ttSvLWO+d0PAtXWPPvUN/jEJ36PyXjM6OCQpphxfqXDj3/wh1lOE9pZge8OGQ4GbO3v0e31g3pDklI3DeVMEqmI1hm6WYe6nFJWBadWlnlo5SQnBktc2d/jcy8+z7RxKB2TpjmtgN/7w0+xPyn49V/++2R5gtYJxhp63S7DpSVeffVVNjc3uXDhAkVRkOc5L7zwHPd/4B33ZA2/3xACoiji0kvX+L1/+7u0Tc3ycECepQwHfXCeyXjKdBxMjtq6xhpLpDWdTs79Fy6QpRFXXnkFJQX9LAvY5AWG0iOIowRrWtIkJGOBb+FR0uNsw/r6CVaWl9nf36eu6/DnrONf/c6/4sx9D/Lu9/3wMejzr2iNXi/XKH3N3s51rl15gboco6RjY+MUggWcxxiyPKMuG/r9OGD3vaeYzhdkOE+96PL5wFDDWo9rWSiAmODnIBcwBe+JhCXWkjyNsG1NWymsA2MNSmniWNK6UJzp0Yib16+zsnaGJOuSpaHDfndxcS87pNba4/4nSkm6nS55t8MeHuPsAisbeAzHZpTzosBZS6SDAohfJGxpktBZXqWXdyhmc6RMybMObWOwxtHJu4zGB8RxhPOWpqmYFwVKS9Is5eb2LQ4PD4miCB1HjCcTYhUjhKBpqvApRZD4bRqDJ8CIatOE6Y9fZ2N1BS8kTdtSliUiSZgWs8AByVI8QVg0idO3vXZv9D1IHJia5596ipe+9RzFJOwpLWO6nQR8zerSCZaGAzZvbbN3c5+iLgO8x3oipUlkRCIFuQDrWnp5TC8TDJc6pElGU7ckOqWTdYPYxXzOhXOnmYw7JJGibjxKObBBnWfYybCrQ7LJjGnhmDtPWdfURcuLzz7HN774VVbWTqNXVkCpAKP0301K/AcX3660AyBtRVvOOTwacXVzj1deuRKUe44JuHfd43cLOhxPzG//Xkjcscvz4pnoFrKtclE4WNsuprie6bzgymvX+NSnHuPXfu0XF00G97rP9r1cx72Ou3PEN0q4v/2vPIbTCiFRKkLrhNhZUu/wyoO1TEeOcTFbQKju/sN3FV/c/cw+nooIjAHnWuJIgI+w1oEX7O6O2N8fcXgw4cyZVfr9DlVVsra6xrWrN6krwemzA5q24sSJNYQUvPLSSzz8zouIyBNrhdfqNnTT2XuzI+tihnCWPE2IlLotvGBdKCyCep27XVwcS7PDYk8BRAqpgzqTkuHeTyNNqiDWMd40eNPiPcgowRH8pxrbYr1dNH0J3hPekUSKDI2rHY1pmYwOePKbXyeNMvr5gLZNaSqDkA5nPa5uoWmhtUjriIWglybYPKNR0NQNpm1wJuxlnSR0krffVAm8Do1xQULXWUWiI9qyYW97F1yAd0mtsaahrirSzgq//uv/JR//tx/jypWvo7OEn/7pXyDWPSajA/7F//2/MB3tcGL1JM5Dd2WF569u8Q9/45/wwfe9mzzP2N3b4/Nf+AKmnSGdRGkQ1rK/u81HP/rb/MxHfpbNa9e5sLFM6wRbW3skgwRdlTSlx2iHT3xQ0bIOYRxRG+GNR3mBEgoNJFoRaxHkmKUkigU2M3f80d4g3npyIe+gKcXtOj9U69oZclNwWjUsHx0gb16ivHmJga+oXBswb1YhRERV17StwTm7MIyy1E2DbRrWT6yR6dCNivD08oyzG+t453jt8issDZc4tbzCfGVEp9ulm+Xs7exw5fIVZrOSrNvlHe98lOl0zOnTZ6lnlraMWBn2KaqW0kbM5xVlZbDjHaqDG5jBWRqhSLF4JN6L43vkGID6tjcbEAqbQAS4q9v6Bpjdu+JuCT3vPdu3tvn/PvEJXnvtMp00IfYNJ4c5P/GB9/Dw2VOIpqUQiqJokElMJBX94RChY4xzjCdTchlzNJuTZjnzYo5vW+5b3+D8qVOcX16mG8X4SLA7O+KZazeZNy3VAheY5h0+/8U/px9n/Cf/6T+g0+uglcKaO8Y9URQxmwVYxyOPPMITT3zznqzf9xqeu3N1QVXXfPIPPsnNrU3yJGbY79HpZOAsu9u7RCpgY/cPDsiSFKsMS8tDHn3Xo7RNxTNPP4VwjiyOUTqlbuqwX50jjiMEDpyl1+thrWEymQZSmXCU8wlJpDDGoOOY6XyOmM9pqorrV6/y6T/+Yy4+8iidbvettsFfWnjvaasp16+8QDE7wJmSjfVV4lgxH08wTYvWEcLDyvIqEsV8NiOJI4b9HnjPbDbF1G0gB5cTRtNxGPUaQyQ9nXjRXJChsDbWoiQoJNJblNfU84LOYICqVOiCeY9eqHNNDg547fIrXLj4KJ3+EmTpoilw5zru5STIGHMXsl0QJzG9fg/jHda5BfEwFBiSkCg1dRBNSLs5aZpSiQk6ihgOhpxc3yASkgjBwf4eY+fod3L2t2+RRYomjlCRom5qbFXjm4ZOktBWQcI2jWK0CuT6Tt4lzzporZnNYDodB+17JEYYUqUWEzUwVcvO/hFrK6soHaO0JokjjGkpqgonIE7T4GPjHEny9ouL43hdd99bDm/d5Fvf/AbXrlzBNSbAzRKFdg0XH7zAyrDHlSuvcWPzJtpDHoUJqrMeaS3YlhjFyV5OVZf0spiTJ4YsL3fp9XuURc1kNCNPBUncQ8WS2XzK0lIPax2T0ZSyaBGuCT4kUUSeJigliXUdHpzaUjaWtpzxtT//HO9673vJOikyy0GoMD35SyZ4v1l47zHlhJ3rr/H8pes89oVv8OqrV2ltgPZ+O3nZOXfbidgt+AgQnKFDch2UepQ6NtoLjtQQPCAWdgYY56F1TKYl/+/vfoIzZzf4yE/8jVB/fQ/FxZvFvSg2biuK+u8sJI7fPy4GXtfskwqtYxIvggKS1qhGMaoOuPrSdbRQtG17l0LWsZHnHRTCG0Gcj5/jrWkXr4ODvJaKOI6w1rO9vcf58xsMhn32dvdZX9/g1SubOFmxsXGKa9e2OH/ffYwOJrx2+TXue/hMkLi+6+ffCylVgAiPioP3g1jAoKy3OGdomuZ1BdZx919pjZSKOIox1lJDKAqEIPEt2rb04ozYCzIpkFEQwFDCEwlP61q6iWZeVGgE/X6H2eSISHq0iomEomjndFNJWbTU3lJO9vn6Vz5PqjTRgxdxJg9fhbXUVUk5HVHN9mjKI3w7J148g7QP3hveGIwzIEKDu3sPuGZeK1ASicJbR2MDZ7AaHWJrg0YSxwneC7wJjaX1jQusn76foqhCA8a1HB1uce3a83z847/Fl770SX7ll3+V2kZUxiN18DN69fKrXHnpBeqqoCrngEV4i9KSSCtA4b1ip6y5dvVFcIInn77KAw89wjcf/zM+/GPvo27mOOcoWkdpW1oHkRbEUuCbFu8VUkUIwhnctJ6ylhSFIJUOrRZwVf3mBo5vDfvWd2E3j/PkRXqsjKVTzVixhywfXmV88zIdUxArKAGhIoSXFLMCYy15nt9Wh5oXJa0zCGeYTcYs9zqcWB6itMRWhnJaMBqNKIqC6WRKv9MBZzF1xZmNdTa3blBXJa1piEzD3t4uxlrOnjvLcHmVpm5I0zGnVpfY2h3RjQW21ZjikNnRTdq6wCQdvG3xx3b2d5Ns71FxcWN6iGtb1obLpCpCcwev+70cpmVZ8alPP8bT33o+VPWuJqXmx37oPTx8aoUuhqyfU6UZRROUeM6eWifNO1ghaJxn//CQ2XTKamM4mEyJvOXC+ionloacHC6Rp0GhoDfIeOeZDSZFw/XDCUbHOCWwpkFLx2c/9xl++Ec+wI//+EdQWrG7gFasra1x5swZ9vb2WFtbI89zPvD+H74n6/cXCu/56le+wmN/9hh4R5bmRJHm6OCAyWhEluasr68DoEejQNz0nrP3ncGZlpdeeIFhv08xm9LvDYl1ymQ2YzydYPGoKMKaFoxBK4lWMUrKACXwYWQ8nY6p24ZOf8DSyjKj/X1M02KN5+uPP87W5hYPPPRgUGxYxL3u5H23n3cMl3DOsb+zxfhwm7ocs7LcI00jmrqgqgu8hSROGPSHtLVhMino9LsM+ysIPGVRoqSklw8Yz2Y0rUVoSbeXkccRSVVTVRU2FuAc3lqsV1ilkHgiBenigea9p9vpMi0qWmcwbSDKz8spm9eucrC3R2ewQpwmpEn6umu8l+tX1zXe3YGLxFHMYDDAC0FrDN55lNQL7wgFApq2oaorlgZd0iSlVRqpBUsrSwyXlhHGMZkfEjlPOZ+zfbBDPRuRRTHJcICOIqq6wlU1sQhTx2nVkObdRVfQk8QJSZaR5F2SJCFNY4xpGE9GeBRRpBEiuHwnSUpZl0zmFddv3OTC2dMkC1nGWVMzmU5o2jbAJ+OIxrSk+gfjJO+s4ZXnv8Xll17ANw3DXh/rIVGOd5w/x1Kny4svXOLa5jZRmnP/yR7ohM3dIw4OR7SmIY4E62tdmsowNmBmc6bak0eeE8sD3vneR5nNCrZ3drDOg1Cc3jjBweEBUgYjqO3tPbpZtDCZC1O2JEtZ7qd0OpqsitgfTamKhp3Nq3z9S1/k5NkNunGE1JKFVsRtnsJfZXjvOdrZ4oWnn+Dp56/yjce/SVO3WHdninA8vTiWYH1jkQfxbV3+xXWycLMWwTnZ2ja4KAuJc4FXc3g04f/6rd/m7JkTvOPhB28XL99NGeo7YGXe31adezshbz9ceWNos7+rH3G7hxjWJNICKTQoSZylRFXEqy9fJdMd1AI+ppTCOcNt87fFr+9U+LpThASDS7kAbVi0lmR5ilSCpaUhSgraFtZOBNmdVy9v8dDFi7y2eYmiuMHSoM+T3/wWD95/ga2bO6ycXyLPgueIJBgc36ujL5KBQ4YQxyATnPOvm4LdbnyK4ynYwnNCKbyxOOvxviWPJCuRpiM9J/qSjRNLdLKUNJIIZ0giResdXkoaY5nNizC5NpY66xGpiDhKmZQNeQuNEBw5GFUVpbEUY89Xv/AYSSQ5eWodrQTetDRVwXR0xHRyE9NMUVTksUJmGVhLowy181hjiOKINEnI7gEc1GqF1AtfJxtkg+vWMjk4QvgFv0nIwFFpGrwT3Hf+QTZvbrN/sI3SLc42/O+/+T/StjAr9hHWEcmUg7knTuH6zVe5efUlyv1taFsQgo4+No4UJHGElpq808HYYAY5P7rJf/Brf58vf+lxnnvqcYqiYXxwxMlhDzGdoaTCAdNphZUqwAaVQwiF8iLQGaxjOnN4b/FtQ1tZOh1DlBri+M29gL5LcbGozP3iQPDgkUhn6Yia+7oCLl0lLQ8YTw5Z6mXMJ2PSNMVYx+xgjJaKLE1J0oTx+IhiPg8kGufQSpJlHdAxjRecOLnO2uoq48mEm1u3qOsGYy1HB/usrK4gtCSONA/cd46t69eZzUvwnmtXr6K05ubWFsPBgDhJWF1ZQYoR167fCqpJKiONFdI1HI0n0I0x0mBkUA9SIrjpBonae1NcbM+OOJUPSKQOh93iEHhjrsXxzSsX5qeew/19Xrj0HCoSpDpBVjM++PCDPLJxklxJsjimk3cYDHNq64lVgrOOKE1prKNsWyLnMd0+rfPs7u8TnT1DnsXEUhArARqc0GQu5vTaCu/1kvlzL3FzPCMZDAOesgHrG/7gDz/Je9/7Xt7zjoewpKTdAefvO4fWitPrG4tDyXPu7H33ZP2+17jzfXkODw/4zJ/8CWUxJ5GhS3d4cMDRwT5KSk6eOEGcRMxnc5aWBkghKMuKSy+/yOHRIWc3TjMcDDhcwKTStBsMeBadiaPxEWVR0M87eEHorkcyTOPqmuGgz8bGBmVVMz464vz991OXJQeTKa1puLm1yZPf/Drnzp9FyCg4dwt5+woWj6t7uj63Hwy3V0kuviuDaQt2b12lmh/SzROyVC8MAuvgAqsjhksDqrpiNj9ieWWFtdUVlJI0dUWWp6GL2rSkSUaedxAe2qSgms5xriVBL84Sj/eO2nucVERSBwWjSKPjGKeC7ncax9StRSuNMQ3dfs5kdMBrr7zM2fsu0DQVQkqSKPmBFBh1bYLXhTqG2cX0ewOkDImY9wvjUC1JswijOkgVMyvmeLGKimM8huHSKr3hKr2lIUhNJCua6QytPT5VnDl/ltXlFXr9Ic57Do4OudLpMplNQUjKKigj1U3FvCyCDr9t0TpGxJqlwYC2rWnbhsmsoBGGXt4hiTRSeaJYM58X7B8c0O/m6Cgi0YrGW4r5DOcMSsbEcY4p5qj47Xfw7s7gvAcvBcVsxgvPPMv4aEyaZuA80jnuP7fO0rDPiy+/xq3tA7Is5cyZNd7/8AM88dwrtGVFHEVksWDYy4ilY2mYcaIb07QVs3LOeHeXzaamPBrzwMUHed8PPcqt3V1ubu2zt7uDjmNG4xGzWcXheETTdul0c+Zli5SC0eSQceTo9TsMBwN6vZzR4YRiVvLy00/y6PvexcODDkmukCzMHL27nb0uWHvBA+AHGIHbIRaka493Lds7N7ixdZOnnn2FybSlNeEhc7ds+bGRY/g+jguNkOQcG+qF98IEwywm0reH+MeJMzpcO6F4NcZSVZ6rVzf5nY/+a/6Hf/zfk2QaITx4i/RRIFAHi2uEFKFgl4Fk7Z3HLfgqyjvkvcCJ3uaIHCfBx1fib08ZjtUEQSy868J/j7QKzaJg9sNob59LL1zm4oPnyLsJy0t9iumExkQ4xMJhXoBXt2HOt5/ri0allEG56ngtA8zfMptPyfOcW9u7GGNJYphPR6ysLDOdzrmxtUWvt8LhwT7joxmxEjz55LdYP7fGhXGBjDxIUCIicvpNKqnvP9pF83dB7FkobHGnMBVhQqOURmhJIP0DUUrZOhrrEAiGieKBpYR3nj3BiX6XlUGPfh4hhUdjgw4GgmBtsZiUCRWKXCHxRCA0yJjGOMazCTtHB1za3ubq7pwbhzV1K5iP9vjqVz/PX/vQh8iTCGEbmmLObDrC1kckAuJU0YoE7Q1NVTFzHmMdFoHUobhIo3tRXMggIiAlTnmUEzTzOb42CAdxEuFskL73pkHLPmdPP0RVV+R5RDEGj+Pg4Fow7XUWTczXvvIlHnr3+9Fqxsd//2O0oz16iad1Dil18PJCYI1BHCt6NVVo1inH/s4m/8dv/q/8zM/8XR66/+9oI95YAAAgAElEQVTx8svPcfnqdd7zrg3SWOKEZFrWKCvwFmpr8RqENmgh8TYUx7YEU1U0RU1VR6yh6SqQ6m1MLoLj3TG+MCRy2rVkskG1EwZdTTMuWOp1wdegJW1VMZvNqE1DrDLSLBQWdTVDyWDAIQnkpjhR5HnKcGWZqjW8dPkyo6NDqrqiLAq0lvTylKWlPr1BD4lB2ZbYOVKlaGZz4jjBVQ3zoxGxgqV+d6FiE5R8tI4xwpPGClE31GXNNF6ofyhL6j2Jt2ipEEq8FYzs+4okSTjVHdIxglYeH7R34m450CDhEf4nIQTWtNy8fo2b268RaYcyLedWlnnvhXP0FERRQhznRCohUposVkgVI2Rwq8yAHjm9JEWgmc1mnOx2g1tvpPEYrG2C2oQ1aOfRwKlBy/2n1rixs0udpKSdLm1l8FRcunyJr331C/zsj/8kMl2m8jFNNUWmoSN6eHiIEIJe7y3Ej38AcaxZ3bQNX/nSF3nym99YFIrQNC2Tak7TNKwsLdEfDpgXU3Sk0TrmYG+P6WSK8ZZup0Mcx3Q73QB7UQqvY2QUcXJpwNHokKaukBLiOMZag/UGLxwGQywSpIrpdHucOXOOK1eusHtzC5nlVG2D847ZbMwffvL3+dEPf5DT584iooiFxRAgFv9++/HG8ITgluw47qQZpqNtZuNbCGrSLDiblrMZdVGD95w8uUpVVxyNxvSHQ4bLA6IoaNzHSRwEHowhTlNkpHF4ZkpSOgdVic8VMsmQ1oW9JjyZFOAkwgZddIlFKoFUkrZuiZUiT5Lg0Fo5Wt8iBdy4/DLth/8GYmn5dZ3OuzuH94J70TZB8HZBmiKKYnq9Plqr0JlzoWPX6WbkzjJrK+rGMpmNccISJTlKg441tW0p93fZ3dlBG8t63uXkyRXOnDnPxsZZlpdP0O0OFsXFEQ/dfz83bm7hrGU+nmKdZTKfcDQZsb27zcFowmRvG1N1GS4vkyUJnbwTyJAeiqah1++jpMXZCu1TjG0ZTcZsnDnN2soSHB3RFDPauiRLMuK4RzU7QkXZ2147uNMd9gKc92zd2GLz6iZSRhgM0hvWBl1Wl/rc3N5mPCtI84wH7lvh/e95gBuv7bB/OKYsLVGkWOko7js55NH7L7C+OiBPwzl9NJ2zs3PAdDRmfnDA01/b54F3Psza6XVOrA6Zz8bs7+5hvaRuS5Ce8WyOTlLq5ri7r6hw1EdTomlJr9dj2M3ppgm+mfPsV79Ad9jhwiPvwSUxUgWCt4BA9PZB3FVwb+RA3yjEIjn2SDwSIQIMojAN13bHXN8uqVyEkBbpJY7X3wevfx14hUrp4PwuwzpoHSFQi261g4UWW8DYB6GF4NkSvCC8sFgrqCrDE088w5PPvMSPfOiHUVTEePAxyOMkPHDOJB4rQlGhUVghcMKSOAfOAG8PlicXHfdjP4VjaOPxBPI2x1uIoAK2gEALuThDvEDKCE/L/tYuESmtbYmShLPrq0yPSkZTi0HiqYMxqA95Rsg1XJhgq2AkGWvJoBeK/VkxpzIeYVrwnqos0GmXOE2ItaCaG+RyxMMPv4Mr1zYxU8/Gxjl2d24ymx4x6PeYzWquv7rJhd4yTntin5OKBXn6HkSxIGuLULuEqcgCCqYijSK4W+tI47UkFsFMduo0s3mN9oLlTsSH33mOd6xqBsqCaJG+xfsUrQIvUQuB9AohWhSB1xacv4NAivUOJ0PCnuUJ/Vyx1pfcf7rHrZHliUs7PPPaDqO2ZHf3OpdfyTl9YhVla2w5Q1hDL5YoHWGtoHQSoySRFEjAeo+RAi+DtcK96EkZ7xAGnPbYSCJrg5vPUY0NsEMdro3WgqtJsw5nTl1g/ewKn/r9LsVIhztOgLceiLBC8MqlJ/if/sl/Q7bcIxWwnMRM2wDpUkoEkRQRTFKlB4TDeRPEiaTEGoOpS77y+cf48N/8Sd713g/wta/+IWW1QqsVlsV0oqkxLhg0ChchMFjlsbVFWIWyECuYtuBkhYgTnNShGH+TeOviQimCBe2CM+BBOot2ULuEsc84PVxhfuUpBpHgcH/C4dERVVlhrQna8MKxeWsT4RzSe7wxOCWIEkk3TVlaWiLPMyLpuXL1NeZFQTEdIU1NJ1HEIuJMv89aL+VdP/QoaSyII8cDF06TbO4yGk3IkogT3RTd1pzo97DOoGTASQrhqYspOtOsDc9THY2YDA550afQzenUnkxCKgSRaBdY8Htzs54YLOBQBgx39Mbf+Kff/a6nrgueeuZJillDnqQo53jPww/S6yZIGeRm4ygi+GIKIhUk33QU4zzBzEqIhVyqJY36NE2MX2gYNy200nP8TxLHOO8ZdLqsr67SyzOmTUM00MRJdNuc788/9xgX1oasn30nNl6ChfRklmU0TUO/32c+n7N6T1bwe4vjjtHW5iaf/vSnQSw0r6WgqCrKeUkcKQbDIVpHzOYTOrlkd2eHpqpZ31jHy+Ck3Ol1yfIsdCcR7B8dkSYxsdZoIegkCY0AY2qiONiohQRZ0e32WV5eoa4bBsMh3V6f3ddexZcVWZpRFiPatuXaa1d58oknOHHqZOgCycAfeIv79PuON4QmwGK/BHUg05Ts796kLmdICVoorGlp6oqmqTixthpgU/v7KB0x6PcX0ICAU7bWY0xLlmWkcURwurV4Y1BNizKGbifGtSb88h4ZKcq6xTQCUwdvFKEUxjSLKWnongnCgRlHmum8JE0yjo722d25Sf/EOjrJXocjf32h/vaiLAMeVfmwYlrHdHp9ZBTTtg2OMBUQVViruqyoLExGY6QIDrQiyxgVJX5uKCZzfFOzPOhx/7kVLjx0PxtnzjBYOUWWDYiTHGssea9Dv9fl7MY6VVFS1/PgmdJUTGcTtm5t8erVG7x8dYvx0QG2begNh3TSlCpNmM/L4BZe15w5c5Lp5JDSFpimYjafU5cVp9fXMc5h24a2qemkOXGSMbMO7oLp/UXjth+vD6lwU1Y8841vMDo6Crr0xpBrwerqEr6R+LolT2ouPvIAZ09v8PLlq7x89YBb+xNiKVmKJe84vcq733mBs+fXWVtdpjcYIOKU2gnKyYTDW7c4uHWLnVs3Ody8jikmdFZWGfYS5nPFZN7Q6/YZjUrqqmQ+nyOEYD6f0+/3qaqaSEuscdT1hCSpSdMUnQh2r1/jmc9+jlwlrDzwELrTJyZCHjt445H+Bzu1WKTIHCfKCo91ltZGXL62x6RqaLE40YK/A4X6dlK3X5C1lYqIoxghFNY1KCU5NmdbNN5vJ3pSytuwKhbEXa3DhEKIoBS3fzDljz79Od7zvvfSEwEWWWuJxNNKR2QsblLgIoHJY5zQCDzSg/YOyorR9cusfOBDb2udpDyeGtzlabGYVPgFvjv8XtwhZQgWsFa5QA0onn3uWT7zZ59lPiuZjyJYTnjPIxfoxDlXXt3icDKhMQEeJxDY1oRnsQ/eClGssMbQ6WSc2dig1+sGR/rZlKauuLW9y8G4ZFbNaHyEURLfKsTWTYYry8Q6oAySWPHgg/dTzCcoCUVd8uIrV+iel5A4IlGQigCNuhfR1jXO2oVPjQQRzPO0Cq7WYWqh0FpDJEm1Ai84nBi8aci054GVhNODiI4GXBCHiXRCLGO0bNFSoLAoaReu3sFITi32lxMSJwUce2soDUrjrSGVkjO9kuj+IcaUPH7tkNp6rl9+kb5+iEx6EuHpJDFZnASRCyxWqJB7WktrWqw14T6xFqzDmjeH9nyvYY0J/AQWxp6VxcxKlJBEUbRQ2fJY6/BYVOyI4oarr32L7Z2rWNfcViQ4Brl478jyLnmeInAo5xl2+sjWc1QFQRlTB+VFjCPWGhtUiQCPkoKmqenmCaae8PUvfZbYG0TjKccW+hHTpkL1crxqaW0w38QbwrlmUMIgnUZZj1lMZGSkmM+gmwpM9OZQ2u9SXIjbGU8oLjwYizENUkXESQdXWzAF1lTMpjNM05IlKZ1uh+lkSlEXt0li0hNw5lJSCU09NxwWe0HGU0pUpJHCMsgTIufpp5JTy0POLvdZXe1zZm2JdNBj/eQy5zc2eOnZF9ne2aGsWkQ1pTPokLiaxnmK2ZTt7W2aukCJlo2TK3SylJv7O6gThxzYmMN2QKxCRZ5FilhCohTRvYKlhDbRnYLCH4+b3+DnLzoneI/zjqPRPs8//yzWQJJqHjx7hvVhn3ghHxlHEUoEU6w0zQCBtQ5nghQoQuAW8A3ngwNuEmvssdvtYhSlkHipaH37//P2nk2aXee53rXiDm9+O00eABwQzDpUWZSoUyVLtj+4yv6ztqt8rBOVdUSRFCmCCAQwAAaTp8Mbd1zBH9buBkCJ1BFnqIXqakxhZtC9e++91vM8933dGKUoreX64SE3jo74x08f4roGYzRNiJTWcPbiMZ9++DZlXrC8VdB4eTV6n0wm9H06bP621xe7cZcEi5/+9Kc8e/6MN954g08+vs92u6WuWxASkxUU4zHnqxXb3Y6z8zOq3Z7rJydM53M2+y1Sa+qmoXM9znu6tkNLSWYNksg4z9GHh5yenyK1RsTIKC+4uFhjTYYQEmMz6qZltd5wdn5O3bSEpkVqjdGarnfsNhveefttvv/v/z15XqTOl/iXrP4vt76oB4aEBt1vztlenEJweNensKGmpm0qxkVBnue8eHGK957D4+OEWbWJVNT3jrZtybKMshxhJXRdy2Q0JvYO7RzTLKdtLpLnInryLCd4j606dusW4SQxpHTV4D11U1M1HcpYtFRoKRiXRTI6ux6pWx58ep+vfvt3k/57OET989/nb752+w0+JBOeGIqL8WSOynK6pklzJpVkAZddPhFhv90ihk5QGyVNVbFfVdgItw+WfPurb/D1r97mxp2bTJZLivEYaXKUVEgVUdKgmDApLK7taLtUXHRdQ1WVTAvNJM8o8pyPHzzkYren2qxQiKRhNoqUYh1pOsfRtRs8f/KYtmto25btZkOZZyxmU/a7DX3bIpUkL8pkBH4V1JkvnN2ED5w9/Iz3/uEnRBfwXU/fNWTlhMV8TGzAysif/NHvoXPFe7+4z3vvP+SiNUShOJlkvHl9wXe+cpM71xfMD0eUyyl2foDKJ1ihmR0ccHCw4ORwyfFyxvMnj9jutjSbc+bjkhcqaclXqxVHhwdIuaHrulQ8aJ1M+Pk4TSBiZF9VbHYtxlTkE0toGnTXY7TiG8Jx9MZXmBRTtNIooSAk2tKrEaZ8WTL7RQJRvLy40UPsaXZrnjxd8/DpBofC06XAKx+QUVylEl9O+C49A2bIb7ncE4oi4yv33uDw8Igf/egfaNs+da0HCtqXJ4Hp37XWIJIGO1HLBD/8ydt88sHH3Ig7jm9fx88zohA4PJlzrD/9DHJB+dZrRMzQEY+oGOg2K9pPP4GXLS7UcImSrnhA6l76TIZpJGlbDjHp4tP3FIZOb5pEffzxx3z86X1iLzFiys2DA+7dvsOd42vcu3XCs+cv2O13dG6AXQDT0ThR5coCSbiCQly7do3FckmeWZp9xdMnj/ns0RM+/Owpj15csN5DVXfUXYDtnsl8znhUUneOzXbN/Y/3lLnl+GjJxbMVcew4Xa2IuUcJS6HEK0PnB98P0jGAQAqaTe0oreTnSdcy3V9GgY+Ctt6jo2dq4M7MMJEOQ6LpaW3JrSXTBq0CUnSI4NLEQmiU1EgpMFoSIsgoccSEQRUBk2mitDiSMMbWaw7Vnq9dH/PxasuzTUdfdVSrM6YHc8a5ZZQZCm0IURBdgq9E73Cup+2aBMDwAeEd0ntiePniIjpPEJEgJHiPbgN93ZEKdjHIzQZ/EdC2O975+d/xk5/9d6pmhVbiauQrBMQQybKc0bhEqkjoW8ZZwbX5lLjpqa1J8mHXpcJWpaRxFxzGaELwWJNDjHRNhXANfVPRVDWTrODitOF4sUQJT7VvyLKCzkec73G+R4SIChIIuLZD+YgwEmUtRInvPX3ncf2vlpT9C8XFF4ksg04SUNaQ9w3HyuGfP0E1Defnp/jepcNFjJyfniGEIBMCtKHrevoQ6NqOqnU0PiHPltMpMqasgMNZSbU5wwbH8WzMteWEg+mYW9dP+NrvfIvjW9cJStO0Pf1swq2TBYqO1XrL0ckJd+7cQWrBgyfPefzoEdvtBqXg+vGS4+WSuvesz5+x/eDHjI6+xdn0OpvxlCgFokt1tBYK/ao8F9sLDhZF4iiLy97TrzgADV1SBMTgePDgPnWz5fBoSekaXjs6ZCQkRhqE0CjElU8kOIeUCnWVHJwSMH1MiblCGYxKCZkuRqLURNEPBUZMWtgISkhG1rIYSW4cn/Dh0+dU+z02s9gsR0hBmWtmI0WpO6alYlYeX2kyR6PR0O36bSZ0/9JlG7pTzjk+ffCA5WLJ4cGSd999h7ppU2CbNGR5wdOnz9FGs9/vaJuk5zZZ0sq/ODtFaYWoSPg978mspShyrl87odpuUL7neD7FKEEfA71PkoJMW7TOEl1BaV48e875ak1T19R1g7GWptlT5Dlt2+N7x+OHj9htN5ycnHyhifbbNYp+3sULONdQ7zdEV9M1FZkxdE1N3za4ruX4YMF6vWa323FweJRQqMbQdS3B9+x2+xQUNc5wrk75RCG9SOfTKb1S1Os1MuQJc1rkZNZSbXfUuxYZA7lO6azOe4wQ1N6hlUiJ5+WY7b4iywpGZclut0WryPNnj2iqirycf+l7e5WG7u12hfcdYIFk9ByNJthyRLO6oA+eEF06HMn0rEkRqKsa13Xst3t2m4b9rsK3PUVuuXXjmLfeuseNW9eYzafYzCJFREWPDAIRA17EFCyIQSpQGUTv6DqDVhD6juhcyn0g8P79T6k8EFPwoM8sXRuwxtK0PduqZnl0SNs1dFJcNRWUgM1mTV3tkVJi85wgFT68/DW8ks/KSHQdP/yrv2D19CkiRHzf47qW5eIWmRHU3Z7f+4PfwRaGn/z8XX7+4WdsOsF2u+PWvOT2IuOt1w+4cX3G4mhKNp5gRzPs6ABTjIlREDpN7B3jxQEKsFbz+PFDLjZbtIXrR4dUzROshd1+TZblKV0ehqTfPsk84CqJvWlSMdZWjr2rcfUTRJbRKcm32xZu3MZmBUiDUIY8L7GvxK/y5fVFAlFMcnREjLi25vmTz3j//Q/Z7bs0SRSCGCXBJzmoc+5KJqiUIsuyXyrE0wHxm9/6Jn/w/d8n+MDjx4/57LNHeCLGGui4Mltfdvy1TgWscwN+WykIkhfPX/DO3/+AxcTQNBX5d6d4m6ctbV/Tf/wZ6niMCreJQgwFeQTfUe/WlK+AVKa1+ifTiqR8GmTdV9ObJPmR8otelPR7pQrce+s1rt04ZH26xcrA3ZMjbi4WsJDcPljQNG/QdT2t64dgYMt0MmEyGl95E1LJArPFAUU5Ig5SqFvXjrhx7Zhbt2/y9vsf8MO37+OjpI+CbdXy2WdPKKxGKUmMnrZrmE5y+r5DiEhRFGzXO7qqR8qMQr0qIe3QJJEiSeEHKICWCqPTx+fFhUSKJGppO0/btORGcTDKOJqOUQyNCp2ygDItyXRAqctzxkBdkwplFEqadD4a7DA2BgwBKXuU9JBrHDlBNsQ2w1SaWwcZ95YXbHYtjY80dY3RB2itkqw9hCHgr6NzHXXf0vQNnWvx3g37tsYIMK/iuNc7otYQBCIEqDpUl6SS6fm53N9jki0S+NP/7//m2fOPAU8Q9kuqlqLIE1k1DHkcRGZ5xsF4zKZZo6VAK3GFDPbeYazFWEscmvXRJ8LZxWrHeFSAa5kUBVmuOV9tuSUVI6NwPoAAa1J1HkSLNBGlAzKkol0J0NqjdUAKT/Tg+462/Q0TutE6HYZjehEEPNEYlBJM/Zbx9ilq9YztxRYRYDGbs91uUpiU0gTviF1LiGlysd1X7JoWqyTHpWVSGmYFHM4XfOW1O+B6dmuLVZHrBwtuniy5c+smJ7dvcnD9OjIf0faR0AsypTk8nGIzyT37Otdu3KRpO7brDX1Vsdtshmh4mIxyjg9OaPuOrtvRP3yP/uGe+Zvf5/wQfGbxyhKlpY8RL17NmPvCNzzbrcjHS4QUyAgy/vN28fiFqjUET+danO+IwNFywnJcYJHIaJDCIociQsTUSUquf5noDVIRSZ6BgKBHDd3WVJS4CFJ5RNeljAbnku7OpTwCLQTTUYk1mn3fURYZtXNIJ2ibPTK2hG5DW68pRifD1x+Hr//V6N7/NetyA7xx/Tqrs1Pe+fnb1FVFiAn7J5XC+8CubREipU0nw13CDp6enlLXdTJoK0Vd1YyKghgjy/mMzBqCNajxmMV0msIcm4qmc0Q01liKYsSoHBMiGJvx6NGjq8Ahay0xBEZFycXFhigiz58/Z71apxfO53PQz2+Cl1y/6rCdMJWOvm/Zrs9pqy2uazGZInhH2zbMphNc7zg/P6csx2itB1lXhfOJauG9Q5sxfV+xDQ0mGgpbJAmdczR1k7pDKObzA/LRiLquCF5ASGQLXKTvHX3vEEqRWQvO07sO73oyo/HBM5/Oaes9QgTWq3MuLi5YHN26+tkLIXhF/QAA1usVzvXpxzCkzJajCeV4QkUabTvvhg7eEKbnodrvqaua0xentFXHbr3DSEk+m/CVe69z6+4dJtM5JlcoJcE7YmggGq7wLESCjMlUJwxIiY6gdEeWF8zGE3zXUh0t2dcNnzx5DlKyqz1aCrxKWSLj6ZTV+ozieIHSmhgi282GZwKWRwccLMZ0bUMYOmS986/kvkvyvnSPffDzn/E3f/7n9Ps9AZFACJOSk+NDYvTc+9oNRiPLT3/yEZ88WLOpFaf7PUujmdrI3WsTbt6YMTueoMscZUZEURCCJTqNFtAFDTIDnSNsTj6bMeka9vuO/XrHfHnA8VGDsGt29Tm7nbs6bI9GI7bbLU2XZFC7agekA1ZW5AgvcaTciE8/+RTXBzZPz7j7tbe4efd1rt99nXy6YLVeMZ3MXv7a8fn784sTDOd8Ah6EAL5nfXbGB++/y/2P7uM6B0GlA0VQaDIczdXB/5Loc/mOTPtDkgBJKXj69An7/Y7z8wsODw+Yzxfcvn0bgeH09JQf//jH9H3KzdDaAIIQPIvFmPOL0/Q1R+jbhh/9+Z/xx7//Xdq2Jv/KV5BLixCe6vkL7LbGZwEVki9BRwgDhap1NUf3vvLS1y4dyD+Xgf3y5y/uSz5c+jE+/5BCoJRnPLbceu0a8/GY737nHkfzGdJFBI5ZblkWBVpbwiALI0JmDLnNMMYQjUUbi8kKlC1ASnwU5OU05UPNp9y6dYNRaTnd7Pjo0SmnqwaBpW0j0gf0TDMbT8mMoiwM09mE89WKXBv6pqdpU5p4I9Qre/UJEQexSso30VphrSazaeoulbzCg0Oy5HZ9R/ABmxuuHSyYzRZE3+IAKzRaSowMQIuIDkVECUmmc6KVSKuvfKYx1TQo7xAxAB1KODwBayVOGFwxQRSOwkW+ef2Aj17U1K5jtdnS9YkGhfN44ei8Y1vXbOsd22bPvq3wPkUilHnOeFSSG0P5a6Q9/9oVQ0D6iNtVqN6DTIoSrqR6IJRiNJnxu7/z7/gPf/phklNFiSAZ5MWQNB9CpG0bjFUUSjErC+xABpAk4pUkSZO7pqEwQ5YKXGWSFEXBxWpD5z2WFt/vGU1LHj09Y79eMV2UxCipFUShEcLjFUgtUFpgosAaTSYUxoAZWbJCkGXJZ5aacP/8+vXFhSyJsQOZbgpCj9Aa6+AwVBTbc548fYzOICdntd7Q1DVuOLAqqVDS0rUtF9s1UcDxNGNZam5PchbjkqPljNfu3qVpe5r1npNlzs3bNzm6dszy8CCZFmeH6GxEjAItPMEl8+m1GzeZN/WAdlNkFi5O9zTNmugqjHQsFzPuvfkaPles7u8YmQmnuxXh+VOytmb8rT9ku3wdFQy9rcjCpZXt5dfY5DxsNmSjkmMK8iivDGe/rBH/vMMSOTt7wX/6T3/K2dkLFovrLMoFucnApD9jhSDiksnKZiA1YfDeS6VAD7IoBFFKdJSpQyc1QVv6rk8V9jC2jELR+2QC8go8ARk9uZKsmw5hC5aHBdvVGZtty7NVzY22ol0/IpvfQunJYHL0yGBTkNq/0RJCoJVE5JZvfP3rvPv223z68QNc6wiuJ2hF24JvuzSe9D0+dOQ2QyvFZr1itb4ghERW6aQfaEmQKYlzPXW9x2jNZLHg+vER69UF2lj2dcPz8xXWKq7fPCEQWSxm7Ks9nXNUdZ0QoyGCMmRZSpS/2Cajbp7nQzcZtLnEG76663K5vhRcFSJKBNpmQ11fUFXnGCNwbU3sakotGY9HPH7yfNhIBJNxSV1tcc6RdwZ8Q56XiL6j3m7QWqNtgdSSdr2jqxtE3yGIjBZLJtMp1X6Pq3v22xoQZLkZUkod0SUTYa40MQqay+lKDAitcb5iPpuzbyqU6FifPQX3dYRRV7KkVzn02e5ScXEZqCmkp8g101HJkxBoQyCGNNcYa81OCIJKut6uaem6nqrpcT0UmWY5X3L3jTcopxNMnoGIeBeQMhBjiycQosAPYYwEn7pfQaSJEJEoIxiJMJI8MxzOJ+z2U1abDat9j9WGEB1BB2Ls2e83OOc4e3pKbjL2Aeq2pR9H2rZnEiLrF5/BvTfJ8zKBOMKvTlv9H11OJPlsdX7GX/7H/8j+YkXvPTvfYRQczyfkMjKbloyLCfc/ecZ7nzzhdNuzWm0orWGsBCeTgjvHc5bjEUblhKiBJGHwfYsf6EYhRqKSoCXSSJSMlFZxMJ3y8cOnuPMt109uglZIaXjv/ed0raNrI+PJiCy3VFWLiIIis9RVTfBpNmR1IDOauulxoefJs+c44PGTBxxev8lrX/smv/O97zM7OGK/2730tQMIUZD3UGuPVOC2W1789U84+ZM/ROgRYnPOxx/9gOf3P+HZk+1gI+9RQhLweLrUIFJmKCoE+HSgSQrnQcolBVpoqm3NfqDpWKIAACAASURBVL2lq2u+9uYbzBdzPv30E27fvYYPe777u9+gc55bt2+z3ez57JPHPH/+jD/5X/6Yv/zLP+fJk8dkJPrju0+fcmYmGB/Zf/QuYvaHqM4TH56TvXmd/uETRNUhCqhsRIWIO62wIUfOj1762klhPvf7SDEYuiPgLhXKVxMMfRmM+EWfiUyACd+0zDJNZ1tuHC0p0Li+SiRGYxHa0PcBZTVFaa/er04kAlmIAqkSrSeKDoRCS00mLEHNyfMRs0XNarflzq1D9m2DloaLVUvbNmhTcrSYoY0iM4qurZBKcnA85da9a8TMs2l27NsGFxxSvZrDscIjYtpPlRAYnfZAI1QiPA3yJSnTdEwNjVApUz6CFQE9NKJjDAlRKyPetYQAQoPWIqWg5xY9WyKNwfcd0XdI0rsvVB4RHTE6fLcjSkVmRmg1YqdqsBqBYzzKOJxoXtQt2y5Q1w2FbwkIGplSsPdVTV3V1HVL62LKc1CCxSjnYJwzKzNGrwBFK4RI0II+kvWRsG9JBQV8fqIMRAISxTff+n2+/e3/mf/3P/8/RN8gw+eNMiUEwXdoJXC9x0RDnnnmY0UMewoirq3ofI9zDh88XdfSdBJN+tk0TUvnUwp4Iq5eUGaKXXTcuHHCbF+z3e0ZLacYCX7IuPASQtMglUBriVWRwgpKK5mOCrJCokyaXhijkeo3lEWZGJNujSSPElEjoyTrG0b7U7Yfv01Bi5OR1XZP0zk8gq5PkhutNX3b0jQVk1HBdFxQ6MjRyHBiAoscpqKlevoJ5WjC4UHJ4fEBs8MjJocHjJcHFOMpJrMgknkzxECeKWIwuB7GNgVDEQPb9QW969MLRkRsnpMVBVIZHjx4QLuPLI4PCeePmbia7YsHxPob4HvoFVE4vI/phfwK1u3Jks9On3F+ccHhIks32y919n8ZpSkE/Pydn7NZr5MO2NXgW4ZsFKRSaJk6n1KKq0oYEYkupMCeGEEqQkxkBC0NMQRc8ASfUHPJpxAS7nPQ5Uql8DEOYVuW5XxBrSqQOpEj0Gz2FQ+fPuc7b92hrS/wXYXSE65Od6/Slfxr1pc680KgkNTVnoefPaRt2jT2Hjra3nmCT6N9FxzGJuqJEJLNZkvXdgSfOgYmtyksTwiaqma33TDOc8azKa/ducO0LDk7PcVHwdMXL+jbp8xnU27fvsFqvUFKQZalDadtOwKCw/GYersHBDdv3OTi/Xc5Oz/jxYsXHJ9cY3FweFVYvqowuH+q22bo7gtCcLT1lmq3omv35BKarkFET1lm1FXq8GRZxnw6SebfvkMpTVt1GAOSSOx7ZBTIKCC2VF03yMI9SgtGkymj2YS2aWmbZHzWw4g9Ro8PEaGSPCOpLgQyJizkvu/pnSeGSOof50wnE4QR7Dbnqcsf41VN8Srvuu12Q9u1wyQpPZN5bplOxiASlz1EsNowG48JwuJ1zuLoiKaq6NsWRMDahLc8OTzk5PCAUZYPvPNIiOk59DEQgktFxKUJNSF7kkY3+KsNXCmVEJBaUxQ5i9mUg/mMxm2wXepmGqMhejbrFYj052fTCVpruha2+x15UTB28ODjT5jN3+fW7btkeZnG4y+7BMgQ+ez+fdanZxCh7ZOEbJQbFtMCIz2LWcnjR895972PWe1anp9ukFEykorD0nDraMZyNkIbATJdJx88iAAyTdGTxFOAlAijCUIkb5OxWCPItOTF6XNc9JwcLhARvvqG5oMPP2PfdJyvaubLGRHJZrNnvhgzmozYbvYQHSE68nxM7zo2ux3Ow/xgwa3b15gfHbLbrPirP/tv/M7/9HtMFq8GYSG3K7rJnFZZxk2D/8dfsPn7v+fGH/4uXlh2Lx7z4P67bC5WbKuGcCX9GR5vGfCkd1kUMplEo0AoeSV1ufzH9R1t41JCt3N861vf5Ac/+O/sdhu6bs++WvHW1+/ROUeIgtFozG5dY63h7Oz0asripUSjOd82vJhPuXfnGmf3f8HR3VM6GVBjjbi7oH/4BLev0KOQsKTesTo/B+E5PT/n+OTaS107rc2Q2fFFA3fCBn9RXpb+/bKZk6aFyaAOKMl8Mk+yzUxR5gYZAm1fDa+DgBARYzO0ikB/ZXZOVPGAkh4RO6IXROERaIQMgz9HoUyOtpqyKBkVGbiWcW5gpjlbbZFGMh6XaK3YbTZED2//43vce+s1bt+4zXQ+ZVNvaX2b1Biv4rklFQVSpSA2I1UiQ+nksUiH3vTeV3Iw9g/IVCHAGo0gEF2PkklmZkzK4OiH598gCSIFWEpj0FmJznKCaYl9m7x/fUvUHt+n5z10Dik7EBkphDAgVSoEhYDcJElp6x3bzZaiUOl+VokU2jYtbd1Q1zVN3RJcYFRkzMqSSZ4xtvaVoGiFTz4R4SJ+30HvUmBs/NzzdBlMqIVmPJqw3zfEwfcjCChxuRcmGZTrGoJPEIbSGjIjEmJca7ouybu893RdRwiBuqnIkAit6LqW3gfavoco6NsW3yuIDvXsFNf39F1P8IE8z2h8eyV9zMhQUWIAqz3jkWQxK1hOS7JcEunp+9SM/nUb768tLoToQAlikEQEikDWdyx3FzQf/Ij86S+g2rHabanaSFv3NPWe3GpGeYZSgiA6ptMSJQ1uv0dawbQU3J2VzMcZuRGUpWG2HDE9WlLMpmSTCfl0TDYeIzKLkAkr54MDEdAGRirHuQxBRBFp64rcpBvF9w7nAk3rmUnLar2nXe0YH1yjiw0jLch6R2PT6EfKgJKBXoRUY34pVOg3X9fVCDU5TDQC5wlGEcRgjv9n6DaXhwulFOv1GiFgVEYEFUJ0GF1gjMEYOzy48go3JlXq1EiZOgzeJx9GDAEhAkqSbiaXRmrRJ8qAGz733qWDrfMIoRiNxkwnM1w+Ydt79us9UVh63/Dxg89o2q9TuIrgakTwIIYAmUsu37/hijGNp58+ecrjx49Q+lKHmkztAfCuv9p4pANkpOvSOJEYaNukvaZPnZuu68iVTrIqIZiMJ7z22mtcnJ1iioxxVvDk2VMW8yn5aExX1VhrWa/XxBgZj8dcrNYopTg8POTUJfLGcrnEWkvfdRhjBmrNjtF4loySv9ULle4971q261P2m3N0DIRBhqRjQAqodltGZYHRQ+esa5IMLwZC9GR5jrWJIKF6h3IgPKkjZTReCmyeMZqM8W3PbrVit9kgBJRlkUxmXYsQHVJKjNF4H+l9GOR+EjGgoYOQ9F3arDOVvAdNs8f7Dit+O+CAzWZD17ZEQA7Pa57nlOMJQkqcDzgfKPKM5eGM2/eOyCYLtlWNFoLSZkzKjCp4puMxX/3qPWajCYWygCGKSFAqyUKCG2APAz4zDJ9jGIynaYyfzkYSKQ3aWorRiFnnWMx3XOxbTNUkdPIgi6zbNm0sriPLLOVoRNNUVFVFta8IPVhd8MH798ntBKtyurZ++YsXPfvNmo9/8QHnp+c4H5FCMSsyJjZyOB9xtJzw5PFDPrr/nPNzx+nZHu8EhVKUEu4eFhxODVp5kB5MQBiBUJqoFEFEHB4RfGqaeI+QCmVzYj5C2QZrJYtpRl3vWD9/jJCeg8kY6SPq3nU+ffycZxcbtvstRTljs1pxfnHBfDFmcTim2u/JhCbLNPsKzCCdOD09ZTYfYYoRd+7dYFO1fPLBL7j3jVfTPd797Q/I/vf/lV6WsNuz+dsfIU6fIM5WcKR4/OmHbM9e0HTp4HC5Z1ymJ0ulUkigSAWZ/Bz/hIiJ7qO0Sg2oYb9ou4YYAw8fPmI6TVjk45PDJBM1hmpVo7Sm7xrW6xW3b99ku11z/fo19vsNF5uKabD4LvJpdPzRV79C+fAp/c/eYXs44vC1G7hZhteGflsRTjq0A/Z7ou9Yvn4Dlb08vlxr86XGXYwDCzGmgE4ui/crDwaDFDA5JARJNloUJUJKylGJVILetQNcwaOUoSJNzYyS5EMjCTHIk5VGKE1RjsiKkiwvsdYShEPo1PASCIL3jEdj7t29S98Fnpxu2beJxKPznN3uAikkrvNYldHsHRcvttw5vst4OqF1CR3aui5JGl/R0lJihn1PK4UaiialBEqm79lqjdYaM0xrJWB0yn+JoUfpVIRIIZN6BZnM8oOaIkTS19z3CGMhDkhVH+m6iA+BSMqMkMIgPInqJD1KSYxS1KFNpvAYyJTCeWjqmk5lKGnwLjVs+r6n6zratqPvOoRP0xUdBSqkokC+guJMBZA+IvtAbDpUID2TUnwJm57uQ8GL5w/5+bvv4F2XHk+ShJsYCcHjB/lyAkd4CqvJM5vOLG1H23X4AdjQdUmaFLxPE6Uoid6l855IhnyXLjDR92y3JKn7dodF0vQpe0Q4T+wd1hl0EFhJatIISW4lxnq0viTOZbgeQvzV996vPc10ecpe0FFStC22vuDE9ywevUvx4gH92VO2+4ZV3bBvAjEE5pMx49zQ1jtc25MoWZ666shdy7K0nGSRmeqYW8tiOWM0nzNZHlEcLjGjMSIrUHkOUiGlTp0ZkhnoEvWYsF2a6FNasvCeRiWaymxUkGtF66HvHM+ePsNKSZQxdQk7T+UFs9ffZDNeELUBH5NDSYlXVlyUPZyMZngRyUPyWkQpUL8ceMGlbyBV47dv32axXNA2K1TsKaxEi4SLlUrjQ0R6P9xYfaJskYKKfHCDyc4nCUx6lSERSTolIlIEtE5SKSkEPiSt3yVdI3iH1pbJdEZddex9Rd91acIRJaerDfuqYrHowDfIEAjSEEXqAr0S7fa/YsUY2e12NE1z9ev0YGu6vku/DqnLJhB4H1FS0rY9SsAlvhGSMSr6VKiZ6YzQ9biu5+TaCXmR89njRyAEu92GvMw4Ugdstjt2qws6ITm9uKAoSpbLBc+ev7hC943H4/SC63vKUcl2t+ODDz7gD77/hyhjEfK3XFgAl2Na51rWF88QrsZET98nKpYV4LqWS6L+pMwRvkdGhyBNFcajgkxr6Ht8F9DKkuWG3BhsZtHWgJIoa+iahs3ZOdVuj9EKYfTVzybGgDEG1/tkvBuSr4PzqMHwKSG9yIylbTyub7EYumZP21SUs/m/9A3/Rmu9XtMO3SAxTJKMtUxncyKS3gcCSfownozpXMcn779LlhXMxyXXDg7otmukT/CLO/fuYfLRIFc0pINMSMWaSIm1EU9qsiZEJxGCjKlRLyXGZFcow+A9UirGLk0lsmenSAZaSEzG+stipa5rnjx7yo1rJ8yXy4TD7FOTwWrDyfXrvP2zn7FYalz18tQUSeDJZw/4u7/6a1ZnF3TOU5QlRvYs5iOOjpecr1bc//gBbWfZ7huaLgAKQ8/RqOT28Zj5xKBk0ucrIbAmJfYaqdEyHW4Inr7rkyleQNQKaTO0tWSjnKWfEkMgPD/n4vkpUmgmhaUuFMeHE2yZsat6jJaMTg5Zb1b0TQOFYlxqovNkucZmmn2dZA5d2/Hgkwds9w1CWdb7isXhIe+6lj/6k//jpa/f+V/8Da994+vE269RvzilGUtsbvBPn1HZwJMHH0JT0bs0Zf78ebr0Hg25DYAYEKveB1LY2xe8FyIiZWQ6nbJczqiqHY8ePWI+W7A63/CDH/yQF6en/P4ffJ+2balWa9766jeQ8l2kgqre8+ZX76EU/PAnbxP6JOl6tt3ipxNmb97j/Kf/gLfXsN9YpPs9z+nWe3KfgvuqzQaVGWJhkhn2JZeU+srMPZjYhv+ivzDR+OIUI002EqYmXUMZQaBYLJbsqqEbLQxaa6zNEEKR2RytLVYP8iFrUCqBAGKMIAcoafAE1+EEKA3RtwPYJenmp+MJd27cxPWeLH/BB58+wVpBllsODkqUVGzXOx5++oj5bMy4KFhMFkwmU3wI9N7Td44+vvxzCwnocgmJ0UqhxJDsriRKSTKryU1SimTGJpKilMiQLMpGS4gdglSYSBLeXCuTzNwiIJUAoRIOu94nrxAQncO1La7v0s9EaJTOECT5WgwRZEjpCEQ0ERUCudGMi5ym71MhozRCaIQIQ2M1FdYhBFyfOvXee9quo+u65Fdof7Vv4H94tT06CmTn8Y1DDYXr5R0oxBeKjCh5991/4PTiAlRARokSIU2Xuz4Vub5DDA19K+FgMWUxm3F6vko/+67HqxTe65z7/Lk2iW4pdgHXd0it8cP5xrmUNdM0DdNJiYwO3/YII9MkyKUcDuUVOkCuFcoLQh9pu8iu7rBBDU+WwjuB1r/6rPcveC5AeM/ItRysnnF0/pTx6SO6n/01/YsHtNuWp+uK2nXYzDKbzVDREZotIxVQWlJ7Qd95Qu8YZ4LDPHKQe0qrKUvD5GDJ+OQm+fKEfDrF5jkojbYlQhn0kGAsuEwblQwnYYIAGRRqkLG4uqHKFNfnY57OJ4htz2p1jrEW8oy62dPvW9bnFdXyhPzNb7C3c3qZIVUEldIU4yuCHalBDx6u3nefM+Av1xenF1JKiAlf9+1vfZtqf0EhPSrqFJZnLEoqRBTYzAxdBXH1OQ6M4+B7og+J2BAFwfUIIfEhGYxd33/+6hUiHfJCeuC897jhz5bFCKqe/W5P3WyIUpNlGfu6Z7/vcF1P6GsuARNiSDf9t16XcqKDw0MODg54+NnD5K+IqWYEgQ9JgatE+nW8VJ7EkDCsxmCMoelbCIHxbIrWGt/1XD+5xs3r1/nxT37C/U8/SWPiGDg8PKRrenabDbvVBVUUrNZrhFSMxxOKskAqnbwKec75ZstuvyPLMnZVxQe/+AXee3Qmh3rs1RdlvywfIwqaasd2dYrGEXyPCIG+bRiNcupqjzUKZQxWC7q2JviEnCxGIwwRt9mhpGIymjKfziny8iog0lgNCKrtlvVqhWs7isyirU2hhn1PaNLfZ4whZGlC2vc+YZK7niATSIKQkK9JlhcxUmCUwPU1TbMH+BKL/1Wt7XZL27bDhjb4erRhMp2ll3WIKGMoxhN653j07AlCF8TgqTab5FfCsA8dmJzptZu0NicIBlKORAYQIUJImnjXJf1sOnxc/rjiENhokmaZFJAJ6U4p8p6yyLE6dbyklMiQOn9aqIQqbBRVU/Po8WMOlnPmiwW5tnjXsN+vmc/GvPvuO0wnY0J4+Q5o19b85Ic/ZHN2QegdWVbQ+p48g5u3b7BvG37+7n0gQ0rFrtrj0RgFpYHlWDGbGCaTgiwvUNJioqKQFqsyrM6JEZQPSeLZ1eDaJCHoakToE3J7PGKqNQLFrgnsLypOz3YUpWU6ndIHT9v2RC0JvibPC5Y3b9C2Dc7VIALj+QQf+pRkrhV9H+j6QOY0rusoMwtEnj18wCf3P3rpawfQmZ7t3/wds/9zzCe/eI/JH/0e4bymffSEs7xlt3qG6luct3TeDYnxkasUZbjKDJDDR4zpnhNyaMaRXgVKSV57/Q4xeu7cuc3f/+BHLJcH/N73vkfnW+bz5/zt3/6Q23fusrrY84v3PkRIcK5nt9ty/6MPOTw6pFCKzvdoY3Ev1qgAvHkdv33O/OYt0CXGOfrDKXXXYitPYyPndc24KIlRJen1Sy7nfJp6XuU+iKtPcjg2JG9g2v0uM59CSBKPKNJ1zLKCyWTCvj7H6PRuNibh3vOsIMsKMptRtzW9d3StYzotESYSg6csSspyRBQSH9JEVqiIFqmoI6RmX2YySmNYTEqen8FyMeJsW1GOR0xGJcE7xDjnrbfuMp/OuPfVexwcHaBkoux5H3Ha48SrKS4u7xd1ee9cQmOUSDInNUxrtKa4LC60ujIXB++IoR98cHJAGg/yM5GmMkoniIpQBhF6YucTx8IHQtOiLg3NJkPYkkA6EwktUUbhW4mSIEJIU2KjkbFBxCTxzrICRJJ69wNiVgwfPka64Nm3Dbu6oiosTZ+z717+wGeCgK5HNA7ZORQiFf9f+D2Xe7ESir7bgdiT2EESm+vU5Lx8Bw9FsjUZpdUcLheUeQbD1CcMxcTlR8Ld9iiryTKTmnkxFRiItG+EkHxckJp5uU6wkBghdB0ihDS9iAElDCpIVNT0fWCzl9QuIFWH4DIYMEGZftX69cWF89ggKHcV4f33mFx8SvXOD8jbF1w8e8pq27H3gsmoZD7OCb6D0JMbgRXQtx3e5/RdRCOY5IZFKZgVksmkZHawZHZyjez4BnJ2hMpLlElkAnEZYCUU6JQhoIY3RIwQJUTh069DSiscj0v8bMx+OWU5Lti1gboVNE1CkEkiYd8xmZ2Q3/oaZ9NDvD0k6oIQOoRUpIjkV3NADl+E2Fze4b9mXWYdaK2ZzWaJ0NALRvkEI1OuhZQSxaCjJaHi1CVnfZDwxEDSXsvUxfRSpNh5n15qSkgcg4ZbSqL4XEoFqWvhvaPeV7g+6d4h6cwjBhcU1T69RPpmnwyoQxrrv1Vt8WUilaAcjZjP53z1ra/x05/8FISg79urzl7Sa5O6dwO5wfs0aWubOkmh2hZEJMsysszSdh23r9/g8OiI//rf/oxffPAeiEhR5IyLgtlkTHky5uFnn7FutuwGqsp6vebGrdvkWXZ1WLTW0rueqqoTNlhpuj4dKLN/8hJ6pVdquF5DLy9GVmcv6OodtDV0Ld6n8C1Ik4MoUrps11T0w0ShKArausJXFUezBUdHR0xnc6Q2+BDxMckKmqZmt9lS7/cYqZhNpkglQcmrw3UIEd8ngoYxJgEgQsA7n/5/Sl5po51zWKsGwyVk1uB9z4vTpxzfeh2l7HC9Lq/hy1+83W5L0zQpC0CQPD1Kp+RrlfTTo/EEYwxnmxXj8Zht1bFZr1iMR+gY+Mabb/LjD+7znd//Q9755FPeeb9mMZ8xXSwojaWUilJELJHYNrR1RdJ+D5uxhODSVEephDnWWqF9wJicYDusabBaYZSAmDS7XkSC90m76yHPc/peDGGIZxhjWE5njEZZkoJ2e3IruTg/ZWJevnu8XV3w/rs/x/UtEYGLyV9ydHJIORnx0YcfsN42XLt2k7PTp+m+kcmMrHVkNrbJSGgt2mREL6k3DW17Tt5oTOWoO0dWFGRGEfo9MXT0bY2MqVssgh/4iQYfJT5Imi7wYr3BuY5ibLlx8xpv3J1xcbahqnbpYOo6cqEIOkPbnKZrqOotSlnyLOGGne+p6xpxccH9Dz+gGI2otptX5tO7/r99n+f/4e/Qb11D1Vvy17+LHh3z5MMPOS9OaLsUeJmmEanzfkmFgsG3d/mXxYgMESsklyB0pdL3AZ7ZYsn3/uB7PHnylA8++DkX6w3T+ZIPP/qEH/zwB/zxH/8xDz59QoiGm7duQQzM5xPmswnTyQgfPP/lv/4XRBPolSBToDYV9J7dNKP83nfQsqRTBoNk8vU3sE5g7IjeRk5efwMjAH3ZBHq5JUgd7vDFvUFcehkvPWiDRExcTjdIBbtI/gslNPP5krt3X2ezOyXL86QK8On6WZMhhcRog9CaLM9omxabF+SjCW5QA6DUkIKuCDE1J5K0SAwTJUNZlMxncx4/fci0zDhdRUaFYV/vmLaa6WSElZE8n9J2DSfXDyjHBTGIFHfiwevwyuiWV8WE+BybLwfjthzkYyJEjFSpOZznjLMMQSCEniLPUtM3Xso6kxHIWIs2kjJXaAVCKzAWJQJy8LzEELAy0S+FSohnLzVSG4QYvFV4rJb0QgzeD8iNJnTd5faF0QaERgSDdym7xocEHAhD8vclRWpdWQqtf+ks8Zst4QKx89ClfKT4hXyZGOOQhTOoI4Kn6/YIPFIo5NCZ832XsLIhpnOakozyjOOjJUcHS6RWwxQp6VGuJLQDIKgfwgCLLCfPLWon6XuXpJIheUyTisPTti1jneP7HqktRipinyZvHnelpAhB0LaRjUt4WiEdkRalJaMSfh0+/9d7LqjoKWhMydHxEfVHf0HZPePs7Dmn2x1lMeFGnmNCT1dtsbnG5im9dNc4ei/Y9+A8lFIwkoJZppmOcsbLA0aLA3QxJs/LFJxl7BWnOA7ymkAadyfD0OU3ktKn057aJvnAwF+eqUPu5BkXe8e6us/ZpiYoTZaXCNHjrGBtlojb3+WsPKGVGcRAnysIJU6H9NS+gtVpBvxs8jkL+NVx6SIQRNIlJmkW2KgZScdoZEB4pPfUbc02wCjkGBFR3oHVSGvBThJ7faATiBDTtRQB2pYQG4JzOA8xSmJUdH2Pj32iT6mAiZ5MOibWU6pAv9+T6YJoC/x+Rx81VRC8eH6OfPMafbNKOQemSN0JIYiv4ID3r1li6Fad3LjJeD4nak2wGnxPiD0eT5SDbEAKolCYLOPffedbbC5Oefxwh+97xkWBzS0+OHrXkeWWZ03F//Wf/5RmsyL2LfPphMVklChAs3Hq8QjBrnW0XeKeR+mAQG5T98aKiNGC1vUY1xF8ZDKeQpR0naNMRhxeUdDqsC7/snSQuJQENPsLzh89QNcVfVWBC0TnkVHgXURIQW41ipa+bem8xEfNxfk5x7Mpr929zdHhEcW4QBhBH1w60NYd+802ofO0ZjzNyWyGlXmCGEhFHwPCQ8ThXcT1KfCt99D7SBug8eln1HSOLkIcnsUoOzIzItclykLTndP1FVmeyGiX3dtXsc1W+x3Vbpe6QkPnVynDfDTm/yfuzZosy87zvGdNezxzjpWZlVXVM9hoEJAEGIQkUgzNBn0hWxG+sq/sP+Vb68Zhh0MKB8Mh2hbNURRBEk0M3UAPVdXVNeV4xj3vtZYv1snqJkS0RXYRWhEZXZ1dcTpzn33WXt/3ve/zxplCCYvOPGW7RkpFU3VcXl6RxsG3ILC888Y+D9cL3nv4iH/727+FaEp29o75R7/x32678ZbdqGcoCnZSQywFsQka5R6JRSFtj4hSuihI+eqmpqkb6tphW0/Z9Vjp6Wi3fjSJUA7bN+BikjhDSUkrDX0XDuDFYk2RZiRJkHQUizOmQ82z5yXZ7pfXvT/7+CMWzx7iRc/Sevpiwe2dnIPxiIun56yXFTuTMdJucEKDGdK0HakKXqc0idBK0TlPV9c0Zcdg32CasQAAIABJREFUvE+3aVk9fY+62LCaXyOFZDKZsjMcsn+4gzcOoSWuc3RVx2J+yeNH55xfFFytSjoRfAZN07FpO66LTznYn5ElklEUMjPatsM5aGrPxeU1VgmUinEOtNR0fk2WKJSOkMpzfvaUO3fvYZsGXhKxJ/vlXyH5vZ/w+H//v5n8y+8yVEM2d3aZ/5+/ix1esxYrrDRYC7LrgG2n3geCILhABZQC6wPP3xCob1Z0SGtRwuOlY1MV/NGf/gk//eAD/vE/+mf8+j++y/Nnl/zwhz9iXTSYOOfb3/kOf/jv/4Cnzz8FYTnYm7I3G9IUG6a7+whp6E1BTILoBG4U0Uee3MYQBYgJWJyCJJttJc4SLcB79eLz+jKeGEqoFy9005zw28bN58+PwSNh8d5+JpMS2+IEEDrj1Ve/znK+QuVDOluj2pBjs7neMM5SbLPAy5hiGfZ47R1RntL7HtdKemtRCkycInUGGLxXoYtMOETHOmVn75DTYo32gnpT4ZAsrSBVObN0yLrpWc0LSmC6e5uINDQNhcdJh1PuRV7Hl12RDgCKm5xoKQj+BOdRwiK9IjGSXEumiWeSeA4HMYKOOM4ZaoG1hl6Ajwyd0GykoZWGlDBVzaKQqyOSFENA6jsR1BYG0Cg6qfC2R9gerxSVU/Re4TuL9hF962htS6tqhkZgJDQACGJ88Lcgqa2n6y1N19N3FrwPJnQvaZxm0yuWPaQv4aHRrgsSobB1iA+w3uG2Un48AVF7U+DKEisAHxPbjjyLKFHga6wTWDRKSAZJzHSYc3znhNHBLToPJDlOgPYS6x2Nd9jgskIDvZPEcUSeRESRoLCABm0tvRVAyKlxtgcDnWjZtltBKhqv8Uh6oULjp7X4vscrR1VbeuFCA1w6RNOj+79mzoUXGXlXs7++IH78E9zVJatFgZYRp8cn4D31eol1HZNhglKC1jqKqsV6GdjjrSXCkqug4YrSjOHuLab7t4nycWAX+xA1LnwXZD1Cbisti3SgOoWXgkZJfGTwRqNUgrFRqLZkjdAtTmVI5uRec3L3Nh8/viC/XlOvK0wWY23HnITm3lsUR6eUSQJWBnObCxW7FyKMHF7GEjcD2J/99l/2+i/EEHSdoyhKhsMRaS+RkcEpydn1nN4q1k2LU47MPGWYDpnNdshHYwYeIh3jgTiOwyGtadjUBVVVUdVB4tK2HWWxoe8D1SZNY5QOFbVwAmk9gzhhdzZlUlqePHoaxrmEzl1PxLIqsd7SVBts34QkDRFIW7/Y0oLtwTJU5e+++y5Ka6RUf2ECIOU2YVRIYm04unXIarngyZPHRFqxN5kxm062GQcBZZgKiG3LZrlAWMvebJd7p7cZDnLeeusN3n7rTaqy5nt//H2E7ejqms6H4rTruzAJc8FsfuMdbNsWIRTT6ZR33nkHrTQ3wU4vc302+r950DrapuKTBz+mKq/ouw3O1ttR9tbMaN12GqYpNyVKGOqqpXcWEyfUveXx2SWbxjIeDwMMQQVdMr3DSM14PN0mA9uQct4WeCRN5+itp6hqrrc+jK63FFVLlKa0aJquCmjRrSa2R+KkQGi/7aIJnHdE0hBHCWVZkueDIPHY+oVeRpheVVUUZUHXdZg4HDykkmSDAYPBkEQ0tE1LohSRMTTXK7QUJHGM3soGyqsVT37ygPtXK2RXEGOJ1o4//df/B9PTO1xVa+p2wav3DrilJHd2pty5tUcSaZyHuu3ZtD3rds6qF1TW07QdykQYE3Hx/AnPnj5kXW74ZFmxasOhERn0uF3Xke7mjAcpNtVs1itar5HeUmxWxInCuTO8gziJKdcr7CT70tfu/v1H9J2nqS1NbTFIBmmGUoanzz4JplBjkEoECIUP2mgvfDAvqtDpreuGZJDzyr17xOmYsu7QSrASDi0A29NVG67qAqks6SRDRZqu6lkvN1xcLrmYrynanihJGOcp2uywKWqeXS+4XK549nzOeJzTtxW2C1Pbvg8TNesFrZO4zqK1ouk7oiTD+46+7dE+eNOePz1HKs14/OULM4AoHjP99e/w8Ht/xGunryDRtLsjPuw2FB8tUKM+aNalx4kA/7ghjQkZiuzeehDB3O+ExgqN8w7RNxjhybRA0OOKDQ//5LcZaEW8esTq4ytuz/b5d+//IaMkxtTP+fH3/oB2syHdOeCf/8Z3+df/5n+jWL/H6/de4+zigt2dGc/PCtzWFJsPcpTWN5rbv7Cvvfhsip/595c17f7cIVu8eF3xos3yGSnqxuPotpMO9+LnEd6BDDSfd975ZZrNM86vzukbUDrCO0XbeOKmIzGevgnd06KqGM4mJMMBajDBC4uTjl4ptAqKBCU1WkVbRHDQy+fJhDdf/2XunbzKaOc9ynf/jFRIonyEamvUuuXNV08YzHY5nE1eZHl4DzdZJS8rtDZ0xG9Mx/5F004QIBtaCiKtyJOIcZKQm4hpNkB7QRZFRFIS90sEhsYlLArJk6dXVP4aEztOdyac7sw4jSYcDY5QSYpVIlAwRVC70FnS1jFfzTkv5lxUJZ8uVlyvWoQ13NpLmEZjelkStTWZTkBIrOvosdTO0nqPrxuquqaqG8q6puuDb/DzTwe3VS/0L0EOKl3w8zrrgvJj++yVn/sA3Mi3RZDdgBfkeUKWx8wXJVLoAFGQkkjCINZI77i6WPLHmx9iHVRty+ViRSMErRdYvy2IHRgMghajYTYesFjOqesuGL23fqKA++1RMsBkyrLEyIQ+MgFX7Vtaqaisx3c9Sjp6YWmlozUeJ28KdU/Zt+gvoJd/YXEhrSKbn+H+7N8hPv4hw7bE5RP6vqZra1xfk8eCNM5QPsSr287RdZaqczgkxnsyZRlKj6st12vD2cYhCk9qBEnksWVJLhyKDqIEZeJgUrMdtvG0foOTEa0PDx7bd/S9xZiUQRyFN2KUBX9GmiOkZjht2d2ZsFxsmCQZVVsyno1o1S0u7n6Nq2wXrzRiK6sSwm+xYALEy02Y/vzI+udP4MSLL+/h3t1XePrwY6K+Q0aGpxcX1JuSfLCLznOaruLpfIG+XjIvCk6OjgP5IB8GBK2t6XpL3bTM12uePj/j/PKSdVkilSHPU4RtMXhiLckGCSYxZDoi0RGx6BlEEft7Mz5dLOgvr0nylM5r0jxlsjPDC4frSvq2RPqeG23lS5gy/pWWECEj4MMPP+T27dt88MEHbLadZ7HFu0HYPPM0JdWG5WLOom/ZnU44vnXI7jCnXC+ZHR1i+5ZBnpFnGWVVEtkZo/GM1159jdRovOuIVYRte4r1itEgQ3iLUdDbMHas6hqpDdhg1HLWgQjdURNJ7t27x+3bt0MS7s3b/xLXTSdfbGVIzjmuL59z+fxjyuVz+naN60PQXdjoggwHJ6mKhr519AginfHGq68TpQllVVGUFR89u8Z+ckYkPQd7I3ZnOYN8QJxkW0KZp+s9RVFRVBvWm5LzyyWboqezIKXCKIjTlHQ85HqxZFOUSBu0nJ6gB29ai9IxbdsREbTRAolWCUkc0nCbpgneoBf3wpe/dm3bstqGcN4ACoRU5IMRs509NpePcX1oSdVthSBoW5UEQfCJPLtaMl9vqIqCyFUkxtBWJa/ducX+63f48ScP+e3f/xMe3P+IXzo+4vEwReivc3K4Q1NXnF9e8dH5NfefXnBRdPQqZlNVGGXYHU6RvuP9H/+Y68WcZVFBbxnEEXli6OqWou6IkjXpLGeQJSRGsl4J8BZnLYvFOhyknWNnNkU6S1PVX/raFUWBEJqudbjOEyeKnemEs/MrmrZnPBoitWI8mXC+eBZ05dtEWaMlSoAQmjQdMJntsi4qrlc9nfWsy4ZF2eGtIBYa7wqavme9XmKGBtfBcrXm/PklT8+uWaxrqs7T24aorjBa41C4XtA2cLVa0ghDqkMKuxASdPBiydggrKOpG9q+RwiHSWK0jFDK07Y9Hs+iX6BNTPeSICBCRJi//TZvvHqIGc3wDrI37vDVf/Fd/v0f/hZJ3+ONwGQGYSSyk2y3llDUb/0VXuqQfOw93rUkvuVkLPnG229y59YOrlrRFEuUgfF0wvHxhNFoTFM3/I/f/Rbff/9HvPd7/4buck3kM7762iuMkgzbWEaHE/YO9vnBj36E94FyI0TAlY9GYz6rFj6THv0illB/cUKBZ0vFYmt0D4WGB3ASKTROOKzdpig7F7bCPjxT8nzIg5++y0c//Smr5YbFpkGpiJ1Bwr1bu5wcHtA3Iafncn5NtLym6juieECUxNRtSaQUt/b2Obl1ioqneC8wJt4WBRJDjBIx8Sjj5KQie+9H1OUK3QvuHezxjb/7LV47vUfvFTYdcNF7vP1MdnQTkvgyVkC1B6lSSHwPABdBmHJqAYmSDGJDbiJyFZFHMUZIpA/NqUZESJVwdrXh4bNHNESYLKNuSx5/eJ8fJTGv3z3lm9/4BrdP7zCcjNGRxtqQC9VsNqxWKz76+D7vffAh5/MlZWeRMkbrmKdPPCe3RhxnKSkDYtOjZTBE27airAyl9/iyZlWUrIuCumnpbIiaFtuiSW5lAoE0+eU9KwYZYCj+cwGY4jPZ0M1ZRGypbaFg69nfG3M9v0Zss1i0hGGqyY1ib5xyvL/HaJhzsVjzyZOnLIvNNoNpG5jsQHpJpg2TJCeWDcJ35FlGHqesKbFAJ0BJT6wFzgXTd0Dle6quYVmX1MqgpGbT9yCh9w7Th6lIJx0dIsibbZDbK+Hp2p8/9vnC4mLY14znzzjanKGuP6UuKnoEvm8QfcMw2aI6paRpWuq6pXOBqKFUhJYaI3v2M82dXLI/GRKPxjwr4ZMPH6PjS2Y7E3ZHESc7A/Z2Jwwmu8TDKV3XUS7nXJ094cOnlzy/WFNsHMN4wK3RmFvHe5hpTJekjPKMuJsQjTIwhijKQF4jFUyHKWogyeWUk6NDHj03XJoZjc7RogvjKeteaOQQ8qXRouCmoPB/ocD4yzs1oZKFoM/M8gGDfIAuS6QH62B//xb7R/fIxrtEaUxVFiznc+rViquza1TXYaQlSQc4PGVTcXk953pZ0OGZ3TricDBk//iYLI1Znz+jXaxYXV5QFCuM96hMk+nQhRgYQypqjvd36ebPGI1HtF7T2SbojgHpW/qmJPY9zqvAVv8FFBc/m+OglOKdd97BGMO7777LxcXFFpkmXmiS4zhmZ7aDaxoiLUmjAbPxkJ2dKZmGN155myTSNGUZ/Dl9z1x5dJxRtIIHTy8ZJBGv3L6FMobVesX1/Jrd/SnZIEZohWw71l0ofoVUtJ2j67rgefGhy1/XNW3bkqYhRC+KX7bPYtuFu8lBEYK+7zk/e0pXLWnKBXRB5y/RAeHoHG3d4p2nLqrQ5ROOvYNDFvMl5cWSi0XBvKwo6xbjBQejAaNWU1aWPAtJpM5JbO/peqgbx3JVMV9VFJ1m7RROJ6RZxnQyIEtj8BYZpcirC+r1ihuksZSSrduNvrMkicR5GzryyZCdnUPSNMVuzeY33RT/Ekbc1vYUm2JL4diW/FKSZDnD0Zji8ild29PboHnN0pTR0DIcZOhtavd513Pdd/jUIF1P2fUU1YZ/9Zv/K9FgRNNZivmaqPf80afPOTyckY6GiDTj4uKSP/3+uzybL/nwk6dE4xnJcEwURUwmQ/7od36f1EjwHe26wdWeFg++QwuBt8FndL24RomO2WyKJBRz1vZMJ1N2Dw7ZrFeURYGwPVLAZvXlg+AWqzlt24AL6s40EmRpxKMnV2iT0FtHlCSMJiOkeEYSGVRtCZx30FoxyHOsE3z67JKLVcunZytMkjOajblelMwvLhlFcG9/An2F85YsTWl6S1lUPHn8nOt1RysjCgSzg32aquDx2XMWqw1SJpStZ1E29IsVe+MM37Y4D1pFNE37Yl+JTLw1TVqEcMymY9pNGSZlUtH1FikdaZp86WsH0BuNMymD9Ji2VxjpSHbGDO/dI/tgD7VucEASa+I4om7DAf5mWhjyB8LEwLsO6VoS1fLWyZRfeeM2t492sfUKFdXYrqVoa6Y+ZuoL7kx28V6TdyNMd8jz6w3ffOdtHs87vv/uH3Dx+D663nDv+JDT09ukWcZ8vgxTYh+oQn0fmkyfb6R9fq/+m1yxuUHOfl4SdYOjBbZeO3zIcxA+hMw6KQMxkeDXcD5kRGkZkaVDdiY7DOMcy4Ky6ujantX1FVdaYUzMIM3oK8vq+pqyrSmv3qfz0AnJ7s4uy4sLFhfXTHeO2NvbJ8sGaGVI0gyj1Qt87XA4ZjYesSmuGXQNv/r224wcLD/4kB/8+Y/59r/4b3BR9OJZAltzun05etquC21ovU10D8+rLaUTgRaCWAoyLUmNwWwLSiFCvkzvPRszoessV/Nr7uxPOd6bMRuNibMRi2LNgyef8OzZR3zfbJg/+5A3X3uNyc4MKaBdr1ldX/Ojxw95+MkTmk3LW7cOuX1wRCQ8m3rJ2lasqiWbtkWYAdJAFklSWuKuZBZNqVcFm7qlrBvqtqPteuy2cRzyTBRRFBHH8dbb9eUlja7roQ++NylkmFx491mZ/bkzYMiNs+SpYm8ck5KSxI75csPx3oyvv/0me+MR+7u7gdiE49miQBnJer2kLldUjaPqPat1yLHYn0zYGY1wbHBth9UaLyMmsx1MEhMlEapruX24T9N3PHr+nKYO+71XEqkFTdWBVnR9SykEVkAkPco7LEHCLKwEC65zIWuo//klxBcWF/v1JaP1BaOmQCpPO4ioPWwur5mkEakBZwVF0VJ1FucVZRmY2EqCcx0SzyTV3JpE5Ini+brmwZMNfhA6krF3vLGf0h2P4c4x6o4gS0fIzrI+P+Pq0UPay5L5szlnG4cTmg8V7DxOObw1483Te2R37tJ2NnwAtlWh956qLjGRJDcJxfKaD376QwZv/HPK0QRig24rnA4nO+9EKCq8fznusr/yCrKO8CfJ3u4eSZIyUiNipcnyIUmUslpsePh8ybPNmqopOTo84M3bp/iyZn52n/EwZjwd0znB9eKKT588IRvucnh8wrrteHx5xfc++JA8Tbg9GTKLErJsgCWMv7xRqDgibjqipsY4y9F0QpHnTAZDLjctbdszHY4R3iFcS99VN+2e/2gU+ItYNx/cyWTC66+/zt7eHh9++AEQOgZ5npMkCWmahsCYtkFJQRxFeGdZzufcfusuf+9XfwWc4/zpEy7PnrOaL2j6juHOMQ8+esr9937AKIlJBznn54+5e3qLNI259/orHN3/mGLdcDVfUc4XVFVFt81D8B7aLYY23GKC999/n6urqxd8+pe9Piti/QsWtu1a6vUC2zTI3oaulAxseO8sfWOxvafYVCil2TmYkGcJ66Li/fvPeHi2Id09pJUKUVuauiKJY4wGrVdMJxOMMbRdz2pZcHm5oKo6FquWT68LzgrLsg2j6FEkmA5TTg92GEYQKSCO6V3471IqjIZ+m2PgvcB7i5CSPB8zGk4xcRzwj9yM8MVLqWud86zWq//ovZHGMJ5Oeb6VCggv8bbDe5iOxwzyHGyHkoLGwnS2ywTP5ulDurqjx+GU53rzlLa3qB7who1tKH3P4rd+mz/68x9zvVxzdb1EdB3LTYW8WGEijfA9H0tJVXVoEQ7jvQtf0WBI3zZUVYMRobPU9j1PL66Ybwpio4m0QkpBUW9f1ztu7c+4d3rC5flzVi8hZbpq1qRZxHoejOJ5JvGupqwaymLN3dNjTBxjfaCSpElM0jjoa5SSpJEhTRKIY5588pzf+f4HfHpZg44xsaZ1ksQY9jJF3XS8fTwkzxPSLEhwm6ajbXqybEzTQ5SP+PBswWa1YbWq6HqL9k2YsCnNxXLObDpE6pjNao1zDZFJEEKSKkEc6W0wZgaiQYmeNN2mhQuP0gqlFLcOD770tQMotWXQgfCSWgP0xI2l7aDxMhAIvWNgNHmasi5qQn9UIoUL9EDhkc4i+pahadnNOsZiw8cPHtD0DXWxYmg0AxlyCq7PnpPHhtkwx1rL/Owpq2dPiFWErBcc5Bn/8Ntf4YMPHzHoCj7+wZ9ycXHGZDpmuS7xCLTSwUy7XZ+fnN6slyFZ/KIVb02zN35N731Qo8ubYuOzn016v+0yg5cBawpBaua8xgUUJYeHx3z68D6//73v8/B8zfWq4NXDHe5ME66uV9y7d8p0MmF3f5+yrXl+cUFJxKNnF1xUHel5x8nBAevumqOmYVMsmE5nTCYzdBSC5qSKEDpCackgTYml4Ktf+Qp5GtNeL8iymDRPkOJmUhEaOS+yTeRLAtC8QLd+9j2xvbe0UiTGkEaKbIujLVclZV3hRIC5eCmIqWjrit1xzu4oR7YFm0XFqlqh4oSD2YTdgSbzFru85PqJIVU9eZ7iyzn19XPMcs3JaILbzek8PF2c4a0lMzGJkExHU4q6QugWAwwTyX6u+bWv/RK/dPsOv/297/P+piZkkXqs387QZNi3ldJoY4ij6KUVF5pgCRDqsynSX4S0hIsaposgNUzHCV999Zi94Zs8vaz54OFHvPPW69w+2EVJRd3WPHx2zU8ePOLpdcl8UzNMIwZacTrJGeQJ1+uMKE45PjxmOprgpef5YsOPHz7lalNTdy05oKsN9w52uXtyi7rv+PDBfZxzwWyfJ8yLNSYyVE14tjhv6SSw3U+E8rANmlRaIZ1EdP4LJWVfWFxMiqfoxw/xl1es6pJNW1JvKnYGMXEc0HxF2VA3ISGxtz3aREQmoms7PILWdSRGMkklUkkuPjkjHuzwD/7xP+GDDz/m+ScPaOqeTx48Y6QUST5hcucNBrNdovOn0HRc33+KE4qv/p1v8L2ffkQjFMdHd/jo0cdYEbNz5x7j0QQZ5+EtdRYjBHQNgzTi6OgWzh+QJkP6O99ELDRIG7CkQbAd8GfehwLjJamibnSfLz6rP7MH/CzxyMP2gSWpqoIsjZkmQ3bGI2xVsV4VvPfB+yQ7+zy4nvOj997n5PAW8u99h1vTMSZPKasS2TXYumU1v2Q0HmLShKuLS1Sck5uM3/l3/y94yz/5lW9xpQV3bx2QpgkmzYgyg3fBCN02JUYIxsMRx3sHDDtHG8O6EowGKUpZhLc4W4dukNefqbv+M6yb8LqDg4MgDSNg2ybGMMgzlJDs7+zw7v37ofMnZ+xOdtmslhzcOuaVN7+C7TvyQY7WiqosOT454ZU3v8bdV97i//ndP+DrX/8av/qdv8P8+SMODg9C4ZKlxJMdzp+c8du/87tcrFfBON91gUndW6qmwVpHFCdUdcvzs3N+69/+X3zr299h8DfQ0RMEOIDfpsJGWpNoTVNVeOsDMMBEITthSyVq2w6cwDm4c3rCyd1jlI7QScPwvOCt8W2+8s2/y5999AFPP37A7VdOmU0NUdKCFlRdT5wqHC3z1YrOQ5LlpFbx2v5dknXLj+4/IU1Sbo0HfPrx+yjbcfdgQiw9aRYFqU7dIVD0NlCOFCqk26oYISMmO7tYD6LrsdYFU70MyGr5EsqLvu+5vr6iaSvCXbSdfEURs9kuDgVCY3SEdTbse1rgXBemaCbBe0W8PbDUFmKl6DpPbR3G2qCBl9usAiHpqpZl21EsC2oPrQNRVmAt0GKMQglB2TTUrsMIh5GK3oGTitFgSFUIqmoFsSFKYtre0jhoNxWRkuRJgtgGq202NUo6rq7OKco1r967w7o++9LXzghNZFJisyQRktl4ELw3TQ9eonVEVVbs7YwZDHMuVnMGicHVDZmWxEaRZDHRaMKRN5xelpwvPsYpWJUlXqW8+vpbXD25z3lR82uHbzLbnaCTIUr1eCWIEoVTAcU4Xxe899EDlNBMp2Muzp6Qio5BEoOAsrY8+PQpb7/xGr33rJZr2rZhkOfkqSbWBuUFrm+p+wqXGPI0CyGLgi1u03N9cf6lrx0EGY9wN7jhQIJxqABbsD1sP9ei76EPlDchNEJqpAjIZtWXZKLmaDdipDzF9QXJ1HD/wac8ePIpb33lq/zS21/j6smnDE3O5fNHXF9cMUozvPNcPDun6wTjnT1qnfLpw0csNwVXZ9ecTHZ5/8Pv8/DTj8h2Tig3gRQolMKY8N5+5q34T3wQ/GXGxL/G0kqFwsLz4p+OkH588/p+K4NW20M62+58oO6EvqLzIbODPkEpzfViASbm+HhE2z0hSceczddslnMG+Yi33voaSE951bCcz/nk2ZKrdQvJgA8fPEXoMWnccP7oY15/9S6RdGhp8b5hf/eUONYgOrqmom8bjg9v8cYbb/Dwxz9i32jGJ3fYf/11XDogEgKLxAqF3YYLhz3qyy9JoEciVQDQ+GDqltvgvCyKSaOYKDKISOG6moM04pXDEY2rcIyIXY2VLUobnj0/p6k7ZBJz/+IDokihneONo318pBFJzypdMN1MyJIELxRl26GFpiob6rbh47MzzuaXtE3HKwe3GdBz93DMbJKiY8FGCPLI8K03X+Wbrx1SX18SE4hLVkgsmhAufOPBDHQ1ow0qipBRhHgJlDy/ldDe5CKF5pN/8Rl4IYkSAo8jko7Xjg64d3TCbDhkd19x994+iZR0dcfT82t++JOPeXy14qyu6WVKnI34p//Vb/Dhu/8B1mdE3vHG0SGHt47YP77NcDKl7hqW777PYr6gLGtUbPhb3/wmzz99wMP7H3O8MyYeDGk7jzGKum4Z7AyDN7RpwAqE6xDKo7RGaILfVoAygjgSxEoiarCFo/uCjJAvvKr5+SOyxTVxU/G0LSg2G47zIWksadqeomzpnaBsW6RyaC0wUUTbOjoXvAu9bdDCYmjRKubtVw7ZWMH1T37AjjakB1NkXbK5Lqk2JUXdIGa7RMen7NYN99//gKrxTPeGvHprn/F0RpbvcfvkFG0cd956hSSPAm+5tdCV+KYhlR5ZF+TThP39KclgSDq+w4d+xmwluHCWVn0u0fOm6yn5GeHmX399jlh/I93ebgY/b9O9MZtZnO+IYknaa4b5AJHGdF147WSWAAAgAElEQVTH6ekBw+keo9GIW/mEe3de5XBnSB4D0QAtwJYl9WKF8Y7p3ozp3gnrRUXXCGYjyW/8g3+I1oLXbh2wmj9BR4440Uxne6hYsFmc40WPoyPPUxoTMcoHfH0wZXP2KW3kuLUzQMhmK7sJBzz8NiDsF5x18YIfvQ2sm0wmAakn1dbw6LB1zWQ64c7RAe4rb7BZL/jb3/ga15dnqEHCyck94myH3rXs3o4YDifEUcbl1SWqLXllNuLwu79OvjPF2Yp7r7/JaPcAE6coIfj67ID1nQs+/PhjPrj/ECckmz4Yp6xzNG04CJsoZlWUWAePHj3mwf0H7O7th3vlJRZl4WAiw5ez6KDERmlF6xxJnIRQp76na4McpPINtu/RWnN0dMRkOEYaTTaa0HnNo6cLYl9xe2dM1h5w93Sf070hvl0SRR5cR2Q0y77FestwOiaNEkRac3DvTQbnc5abgul0RorFHewyjCVJljGIFUpaik0I33QefNfTO49RJhgKdUaaj4jzDBUpvA0c8Bc+qRtD5pdc3sNms6JtSzwWsY2ijLQhH4zwwrAuGma7OaMowhUr2q6lcI5BNgRluH18Qt31vPtnP8SoBN90TLKEdDaj8Y6L6wWr1QaFIpZh9P3r/8Wv8I1vfJ3/6X/+V5ytVgEzKgPDJtKaumkASaIj1PY91UriRMQ0nyK85Mn6mlZYRnEKdRvYFM6jTMB7u9biBLTSksQG5x0fffKIxvXcewnd91eO71FfLlmdXzLMEjabgjQdbLN1JF3rEL6jbWuSNAEsGgHCkuggvXDSkQ5iTvMB2XDEL3/ldXoE12XF+eWazaZkfDji6GDE7du3ieIIlY0xfUc+yhkONJum4+TWHrfHe0gcF8/PELJnd5QSu44sVnSFxNqIq2XF93/4E+4cH5PFGa5tcXVLnwoSKYhEhPeSODG0bUddzEMo2zatPUoSri8vvvS1A0icoFca8CjnQUg6aeh9j7QhB8CiadqWYr1CkKB08CIqEe6jvdzwzbduc5DWrM4f48ZHJPmI8XDE5NZdRrMDlqslWRaxnp8RaY2yPbbYIJAkQqF0jBWG6f4tbjtF8vwZcdsyzgXtXsK866irC1Rl6aKY3hn0QDMYjMIzQcJfxXMhXgLxyEk+9//bdoo9xNtu4Qup1LYDK6X4rADaTjGcFTjZY51AqIgsyzg52SU2iudPzziID2lry7r2RDphb++I8c7hVu7asD/bY362JlIpJo14de8eJ6cnnB7fYZZ/jba4xrY9bV2T5AOc2xp8rcW2NcI5vvm3vsUkGnB9sWC+mTOa7rB75yu4aEDqe3phA16VG+nSF7hq/yrXzwZpmxcyPDuFQEuB1hAbRRpHpHESPCORZjrI6S4XfOvVPf78yWOwksZLkszgOsf15RnSDLlzfAcdpSA8WaLZHw2prq9p6gBH6OuOqmzwQmOlZlkXOAe3JlMSkzKLU6SCw90dzp4+xgnBcDRB4Vg3BbEy3N2dIYoL8jRGJwlWBAiO1RorW1AeIT3QI7UgShJ0kiKSBJ98+W5y3/UE5I0PZ4/Q6OcGEwufQQSElAyM5tVbR4zyCVE2QCpNPFS4xlHSUjZrqk6xf3jMVAsePLnga1/9Cq/fOUYuT3j2Sc1oPGQYRQyznMl0h3xvD9NtGI5zfvmX3mT37BKhFUezGZl0nAyS4M2NUtreIZWmKGrUuibWEetigxSaWEmIBDpRKOXBWpRRqFwzyhWpkrjKU2tBvfn5fpUvLC7S+5+Q9w1niwuqqmA3yxhFMauqwNqgKes6i74JR5FQtzWd9TihaJqGRIugb1eeQSqZjXZJhhOywYjGw6bM6IoSN0lRqkFoRTycQDZh/NrbfP2/9IwP77GZL4jKmteGE4aHO0yOdpmdnmJGWbhxuhZPBbYCZ1F0TEcJw2HCej3n4PiQfjRjfg6ZiaH1dBKE9T8zQfD8QkwD/OyY+DO+NMqQJDlJkhO3fWDZC8koyxgPJ8TpkNOjHPlOjpAGrSxaNlyfb5BGY3soyppIGWKlUc4xHQ3D4V8b/uvv/jPKYo0r1jSTiKZZY7KcdJTgbLcN0QndigSFcy0D5cniiHEecXD7iN1BDHRYr/AihCDd0Bh+0Ybum+V9oKd8+9vf5jd/8zdpP31M23VE3pNrzVArXLHim++8xWCQMhrmnOea87NnHBwdQZTgWtDJiOxoxOsmJ/rp+6yuF/Rdy2Q0JsuHTA8OyMZTdJJviVA9vrOYKOL09BRj/phN3WOtJYkz2q6l60OS+nA04vnFBaPRhLe/+tUgI2pb0peQUPvz1s2DW0pF1bR4KdFmm+kiFdAhkSit6LsepcWLIjiOIoySHO4PKauCxx//GSYd8trhkKH2+L5hMBzQNQVKGqRQ24mdQyvJdGeX0Y6gbNYMqPnqyZTlck7flBzvpuzOxiRGE2mJ7xr6pmPla+resi5LvImRvkdnGbFRxJEhS+Ng+G568mT4NyK32Gw2tO1nXRkBRMYQx3HoJgtB6yxKyZApIyLWmwJByc7Mcef0hK7p+fM/eRfhBM7HdFbx2vExRIbxbMEPf/BDIqnBe+6envI//Pf/HVmW8R++9z1+54/+mGa7H0jAtR0GgdFRkB66ftuhlcg4pfOKzusw7ekbEmRg6ttAP7qRKjoIcgoPfR9G3ra3nD2/ZH/45WlRnoaqWjOejJlfzWnalp09Q2d7IhNRVTVt27NYbejakD0kpAzwAxnQpMKHMK4oitjbn5IPR9RlyUG95t7eOBTp0nFyOGU2G1G0fTBbO0NuEsZxhtaC6d4AHwuStw5Y7hrKquFyGVOtVjStp9ARAkvjEq43PZsPHnMwnXBysEekJFW3oW0qhqkkTWKavtzSrmKaKsguFsuCbCAYviRa1F+2hPRIZUHYIPl1krbxOAt6m7fguw7jayaJ5ttvHvDmyYTErTnMTul6QWc1yuTEoylJHNHTIbzDa49MFN41lOVym3LdkiuI+gZdzHl1NmDH77DQnq6rGaT7WG3Q+ZRHz6/5k0/OqHtJ346Y7exs0bg3P/z//+/3sgIwf54c9+b5/vnu8Wehg58Rrfy2YLRCYl0oPEbDEUcHB+g+SNE2yw2L6yWRa9ndyTk5PSRN4+Anqju6okPdrVksr8jHI6Y7++zunTDdPcQkIyJ1CvQICdloiDYCRwjsHI8n/Orf/4ecnJzQnJ+TxEPWm4JWJUxmOzRKYbYeOuEcwgXcqXpJz1tLKHQiZYhUaFwoCUY4Yi1II0MSRUTGEKkIqSPSxDBzEbcGQ7CW3imGaUIcOd5+9ZjJZJe92YxxegsVRVRVRVvWVFqyWC8wOqK3jrZpkUqRJhk7SUY2HaANvHl4hP7Kbcq2ohPwysGAyGgGWUbXtrAoSCNDFkccHO5ytagpeoHzGVZApyx93AYSpm/BN4hIobMUlUaIROPMl7///jIZ4M/7O845jDaMhgMirdFKoaOILN7Fmh4jGl59TTE72KNqazySr7/1SwyHY5789D1yKXnllVe26gtJNBqis4Qkz5G95o3XX2d3dkBdVaFBZRTJrR0myTvszmY8XxZoFZDfWkUsVyvMdIAxCusF2khEIrG6p5c9JoEsi0gTyXhoSLWEHNrMUY9+/jX54uLi0SdcPP2ETTEnEYK9PKdbFUij6bqWvrcoJV6EIHXOI4zBC09Vt3RSgBXYDmLhGCUQj2LigSGNBb3wDKSk0zGNDkxikySgInqV4AeGva/9HdKjA1affIJabkjihGR/FzUbIxODiuIQqGctHgeuR7gWXEuWx9x983Wszrg+b/i9xRX/y7zkvgHTR4CgkdsSM7z7bN1gf43b66+/Xpi9CRYtJTV7uwf0HchtQJaWglgplNYYIDWKOEuJ85yqXDK/nkPfkuQ5Qhj6PoTppVrTFRtG4108gijWdH2D9x1lVxMh8EIzHuQYDXVVI53HSIP0klh6imLJwSjj+PYJ8foJ77x6i0Q6WhnhiEBE2+JCAu4/W3Vxcx3ffvtt3nnnHeaXlxhnGecZd44OSBSk0pEbzyjRDFNDlcZ0oyHDyXQrdzEobRBaMTqMOe3gMnuCUTCeTclGU1Q2xJoEvw2a8c5huw5rA1feOvti3F43NV0PTdsSpwmtDd6U4WjIr/3qr/LWW28FbPDf4FJKIbWm6y2tdYzyISbyKBEh2ibQtJwnSqKgR0bSuz78DrZDKc1oEPHa3cOtt0mFrAYTkWUxxkh8Z0ICLWLL9A4sbYtFa4NpO3ZTwXA3oxlJyibF2eCHkdsN1/Y9rne01lF2LZu6IY8SbN/irSGOFN6FDIPp/m3w5jPa1osu6ZcvNLz3FEVJWVV/ofEgpSTPc5ACHUfUW1mKE57eAkpjvaPtGrQS/P3vfIsPfvhj3vvBTyhqSWsdz54/Z7wzxduexGiktUxHY/7lb3yXd77yJsvVkl9+602+/2ffZ14Hv45EQG8xUiO9fKG7FkDnBWmWI7QOh3UHqYmCwVZKlLsh4fgQVrjlRsjPHbBs7ynLlsVy8aWvXV1tqKqSvm5pO0dRW3oXZKfOeaq2Q/iWxaKgLutAHHGhKdD1jq73uK7FtS0yzhgOMvJhjHdhPO+2IYMaSyw9Wgq83WDiGN+2xEqTRzFppNGuIFEwnGq6ZERRtszHMetFxPmiYtUXCF9SC4HQhtZZqsWcs2LFZDRkN49J4wzXe84ursC15KlCe8emauh7T1l1NLal9+svfe2+aKVZgtYSRGgS9F0PSLSJ8EIGkIcreP3wgNsjT+bXZBGYZID3hrrsiIRAUeKKDUZ5pG65FD1VU6EHKZGRQUYkHcL1GFsTtWu6YoEpS8bS00WS/TgLmHNfMDxKWbUjfvxJSblZBTgEoSD+T6n5X0hFXsIzQ30u5fvzsaQ/S5aX2xA7JX9GHy8C0toKsE6CEBgVoRDE0mONwEUCnxvyeIfXX7/HdDZGac1wMEZ7Q6pTJoOMxeIS6y1pNiCKY7RWJEmMUookjRECktiglMf7Do8kSTPywTTc3Z0lmx0wPbpNdusOPkpQInz+lVNIF4JhnXdBwvUSllLBqD1OYvIoZFpIHImGzAQEbZYGWZSSEUQRwkh2ZcIQQd91OCuRCIZZzOE4QyuFciukj9EuZpxGdFFK25WM5JgkThHIgLAXisFgiNvfxWiJ0QrnV1RFCJtVxrA3TomSDOeh6Rq6tiFSkmGa4Jyj9pLnm4bCRmycYiM8tU6ABmUF2nmk0agoRkUGFWtk9HIyav4ycMFNQfH574ntfaalCGJ47zBKkagMbyBOetLhkN22oW9bXG/ptvJm36VoxrhIIhQoCXGcIE0IHVXKsLuzyzjPcW2L7TqUlKRJyijLA047rhjlOQhL17WoQcSmWIazJh4ii9cdInJEsSfLDJNcMYwNg9wQaxEIQ0OFc39NQ3fx/GN8V5JK2Bv/f8S9d4+l2X3n9znxCTfUrarO0zOcIYfkSCSVoERTgqldQKZXNgTZhmH4D78jvwkDfgkL2BDWu+tdr0XJMiVaSw01HE5g50o3PelE/3Fu9TSHw5Gsbso/oNFV3VU3nPs85/zCN5yQx4EpODZdLEQYrRFK4rwnIQkJusnRucgYUjHOipr9FLC2oak0TaOpj5ZEYRFhxFYSLU3B9zlXbvgIAkVSAtG01Hfvo6xFXF2ggierDLFD+gp8wdbmYYt0W3IcSWHCTT1Ja47uv4m98QXW8Sb/6/d+wvf0jClJmhBIQiLU9QXBpyeqLx1/X0f1ekxWNrtPEqOUYLE45pd/6esM7/0ZMXigdATKzRsRsUfnmtR7xvUz/PqM7D3Nzbt4n8lotEy4fqCqFCJ6lJKEcQd+okoTUSbcFFgoS+UjdDvyOJBDQGRBpQoUY6lhrixDyEzRs2oLEdBng1A1upohpKW4+7yatfuHxmcdTEdHR/zxH/8xf/7d75Kj4/h4yRffep1VY1nNG26drtDWEmJg3/csVqvDhl88FrjGsgvN6s59TGPZXj1hSh4VA9L7gnHmAMPxA2EortRPnj6h73qErhHANE0YK0FKur7nYr0BJZnN53zp7S9R1fUvnOh4vT5KK9rFgqaC2mRE8kRROndGSSbnikQiimEaCMFT5XJkV1JjZhWI0hFXqgKh0UYxur7Q/nLBsuYYy8/IjPcTlTXMG0tQUJNwCma1Kco2SuKdK34a3pNCIuRM5xyD91QpM680RpfHi2Hiow9/TLO8xf0vfPUAf5OkQ2HxKpZSCMEwDPRdR4wRrQvE0ShN27YYa9n2exo9p601OcNu29MPjlu3jskikmPi3u2b/A///X/D//nmd/mrv/4BZ+drxskhtjusNeV+dhNf+8rbfPv3fw9jFT5M3Lt7m9fv3Obqw48RlKRJRjCyKJEIKRG5GDUhClGx0RHte05qzbyt2XYdQUj0Na/jBeUcUxmMVsUFVkq0MkzjRN//fPzsPzQuz9cYY+nDUFR4BGz6PYujBbtNh5QK5zL94IjOlb37AIn3MTJMjjhGCKCFoapapJkjlAGti9EoufANQiSNu3IOiWKgqHTB3YvsaY1lZkE2FXI5x4XMcr3lQhdMdrvusTJQBYdQBzOvlIunyHpNtxEIaQpkNnoaI7l9uqAxEh8FMSummHB9JIuXX7ufF0JIFvMjKtsypHMQCaWhaRoGqXHeo9LEkQ3cbj06dSRn0FXLvKkQSXFc14iUsNZQtzVaK87PnpEmT3KxcEukQgiJrirCPjBMPTfrY1Y3T3GDY7vrGKcOkQIhefLkcDlxZ1Xz/sdbhqHnh3/3d/zhf/6tg+XE338zvqrCAorK0aejcC6u4cbl73Le6sJVEYcEsLwYZIKSgBT+gdWWFApOX8nSnNNyhtGa09NT6qqlsnVReGxbkveM7pgja/B+pBj+KmJwiNSj7QwpwWqJyoEUinJVPqxFShHnIkNOvPWbv81+csSjJaJqUaHcK6VyK7CumBIpvTwUFGA5qzmZt9ycNywbjVaJEBxKSRZN2cPbusYag1SGWFua45bb8xnbKfDu43OCL/w0rTVNW7GYzTCVwRqFyorgI6MfkVbS2KIeB5IUM1kXs9L2aEnTGJTMaH0tqczzJnCImWlykBPROeZVxb3bNzleWT7aXnIxJq6y5CoJNlkRhcTkgEKhZYVRGiWLe7o+kLtfNj6riPh0XEvmF9uDWIxN/YScJNVsRqUUsrI0ShXVtVQUK2MoMGEhFCkmpJAkkXBxLLBdqZBCUQkDVrJaLsmzmuQDKYBRCmsUVltUVbMyhju3jrhYX+DCyO3lkhB2SJHxKSEagTAC0ypmreR4WbNs6iK2URlMMRpCioz+nAP3c4sLUyX2w0CdMvMkWDvHdhzRpozPU0poI5kvZlxcDbgkGL1gcEUTN2ZBxrIdHDGXg8xWlpM799DHd9lePOLy6QNiHMBIVDJYqdFCIlJBsImcsLlB10eEuUcMO5T3iGkALshuKnQmv0fHDkLBLvromR2fIla3eCpn/M8Pr/jftxVO3KLxI6kaGC3kIBEvQi/JXEtgvnT8vOtMXI9py0b3XKHh0D4RQqKk4a233ubd9/8cN41MXtAoi1AKaRTCeMZxjZ8Cod+g3J55PacyltEX7W4Q1FpjpcSPA6hATgGdAvgRqw7JSkqkbUeWCR890ccy9ahqhDGMsUAy9mNgionmkFBFUTGfLWhmiwIPun7P/8Sci09Hzpnf+q3f4uu/+iv8+3/7r7Btxepkyes3TzheFP3nmDOXmw1Xmx2/dP8NtNGIHBHBk2QkJkFSxezIzGYcV7cYpwGfMzJGdLhOjCJx2DHtrtiuN3z4wYeEGKgrDRSt8JASzjtcKFhZJOy7PSld62Fff/i/oCIjU2BZWnP77j2E7zhqBP1+Q2sMcZTMmpppnIjGUJuayY2MY0fTmDLVUBap2qJzLQuXxJiaGCZycIiUDypxCqMUUkAIDu9GYlVRaYttDaJpC3k8RqJ3JD8hhSNERxwdznl8jHTTxOA8y5RQSjKfNSgFwY/stlc8efqYN95857nUbuGsvJriAorXxX6/LxAicc2ZEjRNw/HpKU8/3pAEhBwIAXa7jv0wcnTUElNgu9mRg+eN+zc5+Rff5vU3X+Ov/+aHXF7s2e637PZbbt865c179/iT//JPuHP3FsiMaSw3bp7wrW99k6fDyG5T3Ht1oa0jclHQyikSUiBqA1oxrJ9xoxEsb95l13fsu54oFeYAVUwxPlesVFpR1zV+dEApLvowMvYvj92uqzlkDUIVczKVeXr2hLdeu8c0hjI9SdD3E1YkcgpAKfRD1Kw3O9xwgh8D0mWCy9SVwZiKJBIoihu5LL4n0Xk0okwOU0JXFmUNk+8QtEXqWNco02KToA2OvrMYA0YnjAp87faK+7dvc7XrOVvv2PQTLmaygIBEyHIvoyUxS7rRIYRBSItPAZEl3fBqSLWftXMKJHW1wNqG4YCxn89bjlZLNheOmIpB3myesHkgBIhZgyjF+6yqCuZ9tmA5n1PZGqUqLifNfv8xKoHVNfPZEREYvCDZwJQmFkcL7t+7yzgEVt3A0G3xQ8cUPKHruNhsqI3gqLV0O897P3of7z3aGq75rC/Ckn6R8eKjf/KcLyADXlDskS8YxD0/jznk7VIjUYCgtjUgSFkilKaqarwo096mWbCYH9PUM6RU+DQiRZmoIRNNVRzDJR4dO+IUyVYQfC5mtTKBsCDqUhDLcjZMbqI+OUJUc0Qj0EdLolBlSge8wE+/Vq9/JbGa19w9WXJ3OWNZS5ROTMGRUbR1TWUN+gBhiwhEWzE/XXFnueSDpxd4AsFJUkjEmEAZqsURbV0KozRO+M5hA6xsw34qxVKMpQT0LjCOE0dVi5ESU0lAoVSL0JqoY0m2x4HMRAyOGDzzdkllNMhiLLcPmU0MXPlMl+zBaTwjUi7cPRQyC2TKhU33iiY/n4b3ZfILvNufjhg8u+0GNx6jlCIGjzC+QIsrQ9O2qCTJMeGyK0WFVORrGLofGAaJz46MRCNRSaCtIRpLNhJZK2IofMHKglYGqRW1TLS1ZGcySUQWRzUxenZjTw4R2VToCmYzxWqmuLVsWS1mKG0POWtCiIBSmepzuFKfW1zMK0XUUFvF4EemUGTaYsjI0KO1pFkuOesCT/aOKASjdwdN3EQiMemBZ6NmMxru+CtcWLGbek50ZrZYcfHkGUI4pPEwKmb1CmTB38pM0XBOAekDJiZyCKTgENkj8gjTHiVUUVXJCZ8MTidWbcuHN9/gf/wg88F2zZ/uDGvRQtrjZZG2FCH/DMH6uUv3LyhKGnnopHBd1JTRWBmSaQ6WlSAlU4a2c2itSLWgqk3RoRYSREZVkINiLxXz5ogcS7FimxrXe3xInKxuImpDMrLIkI4ePGgzQWXxw0A/DfRpYsyOECGm0tnUCOqUWeqK89xzcvOYZC1ORQyCanUHXZ+ShCCrCXIuBLX/H0MIwXw+57/4znf4D//mX7Pbdux3e/yyxixblLEEP7DfrxmGntfuvkGlW4RQ+BjJ3pFTMclCqyIBKCuaukZkdRize/ATyTum/ZZxGHj04CGPPn5Aa2tMVZHyFiElMcTSqRUKayq0yGwuL7i4eMLbX/nic9Lwq4ysPTmVLneMkc5P2MWCxdENVGiohSPHiFSCPYbFasV2X97Pcr5gc7UtzuLeI7XC6BppQBkLonAepBLsp4kcAzJ5RNKIbEq3qejvksc9srZoLbG6RgoFWVD5gMtlwjmlwDQ5hinghhERAsOUiVliZaY2kEUiS0HOAR1Hzj5+j81XvoGtFkX9RXkU9nDavlyoDGGaGPYdKRaIGwKyiqhZRbaa7X7g/vFNTIZh3CFVRijY7LbcF7c4HzqmYWChE0et4Vu/9jV+7e0vs+7GAhtyRQrWKslrX7iJrSAFR3UY8d9Yzvijb/4W3/+bv2Gz2x8kZzNRCnwIRA8ySVprONZw/9YN2rbiyeaKdb9GV6BEwWOLDC6AyAJTKZQxhAN2RSuoakNYJ1x4eTOp09de4+8+/pA0Klyf0arCD7DvJlYnS8ZuCzmQgiJXNeSASpq9GxlTpt8PnK076uMe3V8Ra0OuKtAWLW3xo3ATbtwXnfZpQFVV2QuNopq31IuG/aNLxr6naiyaYmyZEoiQqNIBGy0yR1rzjddu8NZrK4Zec3ElOVtPbLvI075n6yYCEWUMs3pO8DAFQUqBLAamFMikV3hmfLpIKfKqIZXzFCEOxb6mqRpUHlFpQoYRsqYLMMVMCpFKZOa2om6WVMsT7MlNmtmcHDOu63h29gSZAqvlkvnJCSev30doif/4Afdd4NHTjt3OYY/vUt1uULsd5vIJcb9m3O+ISrGfIttxj9YSFwK78zVpygSr0J8zxv778On/mBDiZ9MZQf6ZXpfMRUb6Of/iWkzjUAwJbCF4y4ytV7Ttbcb1BUpZvC+PaW1F3cyYLY9R7bIUoEOHxGGkZ4oTUgmsbiBrtLbkHAnTlpxGslZgNEpFZFYIWRcvhhxL4yBapspg5y1eKCKSJAo0MAoO85gDtPFVFReLJavFjJN5xdJArSGkiinJ0v3OghxKgi9Nj5SG86c74sUGaw5njdRMB1+EWTuntXOkqJFWImNPXWVCHth2I5fdwMnpaVGjMpYsNNOmZ58ccwy1MSAlSoFQAiE1XmtEJcnThFLgjKFRkfHiCR+tDc/2mZBGVDpAfg+S0S77IoIhI0kV0r7LipDF516n/9AQB77Ki8Is8mDZ+CLXouw7EhcyV5uecfC0xiOGnsnUBT6WizGltrYoPSbIqXh+pxwJoTR5kSBCgTSrLAqUURyh80RIAWXA1gopDEpplJBkUfh2xhqUMujsWTZV8e1RijxO6CagK8GsVcxnltmsYt5atJXknA7vozSp7Odce59bXATnIJYPJwIhpgJbYKJS5QVmoVhv1/iUGENZgJgzRYQxE3PgfMic7wNfmhz0HePVBRujGHYjRoA2FsLE0KMYWHEAACAASURBVLSoGzeYFGidSTGicSi/I49rxLAhDzuKyyzgD26LqOcmOTIZhKzpqxv8Xxcz/qfLjo06pRdtSQplIOSMzKLs4+IzDoZfIGfgxdznp581v0CITnjv2HU7RjcRfMTHhGlrjK2obAvGEmPg2bMnrNcbpLKY2QJZ1WiVsX1N7racPT1juwncvH2LG7duM5uvyA2ouiING9yYcAdDsDFEfE4FEpQEpdyJ5OxJ0nI1bjlfr3lytmZx9wRrF8wWd1B6ThCKjP+M9/VPH9fjyV//9V/n3t17nJ2fsd33bLY7jmYzlGmIKbLv+kM3uiW4EVtbBAljCmly7DrCFDDaILRBKo3UBa8ec8a5kTAOeOeYRseP3/8x0zhy88YNnNCFYJjzwTTPo+tyk8scCG7i3Xff5Xe++c3Di361a5CzRAhFThCcRwqBUYqj5RLfeXATR0er4gVjKhbLFXXbYNSMRTvHuUjKGR9CMZhMEYgoCVrrsskEDymRYyTFQJbgvStQHllgVn6aDi7MuTgwK00KQEoECVBMBp33TD4QQjw4fEcyYJUoiklSkAU470CO+LTh8uKM1cn9gkUWRbRTiJcvbCWC6APbzfYgqX24N4XAWkvdzvAhFjGLRUNd1SzmAp8yVVURs2A/eIbRM6shpJHsMzNtaE4XSLHAjT3rywvapmbRaPrN+aFz5/D7LY3K3FxUfOfb32IMkcvtjqvtlrEbCWMhO8/bGSfHx4UHkh1P1+c8Xl8QU6CpLSkLoo8HyGXRfFdKYVWRG9QamkpT1RYhxStxmX7rS1/k4vKM9374t3TbDucjSMHTp2fcf+0GVVUxhVRgXSmXjrDUuJgYfGB0ivOrLUc39jTzmsoNJDeQTEMWgTB1jMMGP+xQItFUFcJW6Ax1VdNXDdY2KLvABYV3mbaVJB+I3hGmgeAjIWRikhhR9tG2NfzWb/wmjx4+5sHDC86ueu50E48vL9k4T8iS5Ee6cUJaBUIWToukNNFevi4rIX72m5QTw9Azuet7S5FiLtNIVYpHW5UZlY+FVFPpink9o6pr6vmcennE7PgGSluuLi+ZnGeaJr78zlep6wpZW2TVUlU1Wp4xny154/WWrnc8PbvitS+ecFy3jCLjpMBKgVeS+TBS9b4Q8VXBySshfxpm/Om3+AsoLACUsuWLA9/t+uvnV/X1NCNfJ+UvNBWvX+zzOuMaSmo5Or7B/rxCJ4nwid51yLZh1hxRVytquyLFhBItSrR4VzgCQhRTP2trtLZIC0rpQ5JYcipBLuaHIiKExbkJFyJVO0PVNSiFRpBTgVCHFAuH6oVb9RU13jm5/2VmM4MwiaxKM0cSsdkjSaAiiYGUAzG2JFHROYnvB3otCaIiCYUPAWMMs7ahthapbOGN1oY4wDD27HZbhNDM64raqPI8TcNs0XDx6BF+NBh1zHw+O+z9Zc/QShOTJMZQUAAikaOjbVs6L3jw7AlIsCKjoiP6UKSbRSCIQJa5KJmJ0gAPIRLCyy/g9fXzIjTqBSXan/q/nDMxQTeMTM4XyXrvCDEQYyA4h9FVadRKidGSnCWZdJCOT6QQSy7uIwhJBJIoYgRCW6bdlnRAmUgjEKpAAGMKuOBJKIxt6YctxnoWbSTVBtUrZDuBShhVeEHWWIwxWAs5C2Isb0xKyee51n5ucWGtxRlD8MWxlEOVXJviolo1LR+fXdKNEyF94kj4XG8pF6L1VRY82geGfeak94j9Jb0YELJBIQ8Hm+DW629yfPcekBB+ROaAwBP9lmH3DL3fotyEkvIwDkwgii4zuWCvhayoqxkX7RE/OIezeEKvZkjvn7taZvHCOPFTcnTAK3PoLjotny5c+OxNNxed/msoTYqBp0+fEHIk5DJiFMoglEXqmtFnLi63PHpySVUZ5vMjZNMi2pZGWGw/IYRGK8Fmf070I2JKLG/cYn7nFk1rSVfgO0/MGhcDGUtIBXecASETmVC0jlczHrz7AQ+fXfBnf7Hn5rd/j9N2hlJLcrZl6VI56H6RfO6/D5/74gj89u27/Mqv/Tp/+r/8S84uN6xay3LRYesZIQYmFzi9cZuQIv3+CmMyKQ4oXSG0YMilo5C0RVQVyZbuClKRDgTZybmy0cXAxx99wNFywe17d/ng0dMiAasU3ge89whTSm4hBD5Gvv/97xdMv9KvHhWVTSm6U6BSGhc9mkgWEWUV1rak6Li86g8bR5mcLFdHkCRCG8IUcD4eML2pKPuQiGEqBOwYmIaBsR9QQFIaN4WDt4bGTT0+7mmbObN28dxNW0iJlPlwsJYNc5rK9CKlREQy+UhlLbNao2TEGENdVUx+oO967Lxit70qmOBKHfwn5StbxBACV+srnLt2a6bIxtqaxWxRjAK7jpO5IaOwSrOcz1itViQUUxTEXIQuYgqEaUKFMvmZgme/29FtNsyqm/zk/feoqoahHzg/v+Lhw0csl0u8leTkePv+PWZHXyZlcPuRvHfEXLyFfI74GFnvJyY3MYwDUkjaxuJcwOdyoOkkuK672sqwMBZSJIaEOWDAB/fyvIGQIkZrjhdL9rMt5/3mQDr1XF1tuLE6QtSleJu8K6pbITElGCNMSPajZ7cfmO06dL1Dmvb5QR2mAdfvSW5i3+14/3JNRHLn7j3apqXfbLi63PHoWV/uZySzZoHIAT/09H1HPzoGlxnGiBQGHyK37tzm/v07zFpFVSnax5fc2Ha8cbPlyeWOJ5c7ujEw1wZs+Z3RFeJ+FgKfX+3k8Tqu+QDee7x3B+SsIMXIbrchxkTyA4vGIkRRqEuhHHAhJhKQlEBVFm0sXT8hpGGz2QKSs82O9U8e0izm7MfIrG559vCKJ8+eMjjH4viY2cOHLE9OmM8WkDUpC4QqLsSBSJL60FlPzI9KMvhp5abPKiZedC1+FfFJgSA+8bsRn5xH+ZCZXD9nCOHAv5CfwKi4TgoPvygkJyc3+IkosCcfHSkH7t65U1heOWJFIpLAVKhqhnORrhto2xopNXWd0VqhbIGlJK6VhRRJCCKJHAMiCYxtCpy7XsKhqJCAjpGQIi5HUiyNn+dv7BUt4c0v/Rqn84q59NQiokUmJ4dMPTlMyDiR4oQXEZEK5n52eoK/8igBBg6wR0VdWRQZmQJaeoyS7DY7zs4fc7XZI6WgURqdEjonFBEpAvO5xc1maJEY+p6qsrR1A1Li/IgyCRknRIqEEJEpghKoxRHPHlzw/k8eYbShEZGKiIqegEDIjFCpGOhpjZBFeMQHj3SvNmG55tFenxvX8WLhEXOiHwac97gQSqNgGplU4U8EPyGkLDwoWYQcUkxlajFNdNsd4zDSLOZkpUhK4pWgMqCFRfSW3XaDSJK6LUquCfDBMUwjw+ioqjl+Fzk6seR5RE6CxfECVEPMxYrAKIk+NPeu1dWeA77E5+djn19cGINUEqIkpdJXN1oyX7QsjlY8vVyzHSayPPTc04FgmAsb/rrA2ArNh11kDJbQT5hhj9Igal2woUhm7RzpA2KzQdlnqAT7oSPngJ1JslTFFCynAlWgqPgjJULlQz1gCI1H1ZaLasn7cY+JFUYkgjpsIIc/GQ4OSC8UF9c70SuC9fhwoJnKT0aw5IzgMx4/l4kPskCkYvI8ffaIMThchKxaIpIxJGL2bIeJ86sNzfyIcewZfWSMGRUitZFMSZCUZb+7JKWJ9vgWu25k5JJQaWwl8cPE6AOlJ10qXyENUmZSdJQtMxOR/N/vf8Bf/OBdJiKvncwYHKAbsjDPQV4iF1Jv+qz39/8xXhqnm0tx/O0/+Gf8H//+33G17dj0R5yvd8xmc3xIbHcjm13P3/7wXXIOrFZHrNcbXAjcvXuXpq45ropUbICDugMIDTFEckqliyglDx4+JMXA17/2S9SLIz569ARrFEcnN9ju94ckupjVSV0OtGdnzxiHgZmxzztmryqEKONSmRPedWS3xzDhQo8WEUli2+1IObGcF8xlCB5T1TgXQRuSz0w+4EMkhoCUEyVvEcQQmaaJcRhQUpfDEXmYHAjkgSznQubs7IK2nQMZexj1FoZaKS68D7gp4J0jpIyPMDrPat4ws5ok0nNlo67r0HbB0Hf4qWMaO2xrSQcvCvWKkpUQAttt8a8o+0IpLqyumM8Lx8inTEgFY5xCQKSED4mPfvIYvbhFVoKQ03NVFxETOXnGcWIcetpZy9Nnz/jrv/we3/ja1xmGkQ8++JAPP/iYm7duM18taGYtbtixaC1VZVA2M5hAigFUUabqw8QQR/ZDX7qGWqNtRQ4ZjCSEohgitSSlxL7rOL19ypv3X6Pb79l3E/Pa0E/jS6/b4yeP2W02bC+ukKlovrvoOVo0hBC5utpy8+SYKCfcOOJ8oJsCnQvsfcKhGVzmar3DWjBWI6UluQlExnsHKbM6OuLxw4d8/z++S/CRRx/+hNVyyW7f8bc/fI9n5z3HqxnWwO3TFTIlhn3Hfj+w3jnWnWM/OqSQrOYLVEqcPX3M8WrGr//GN3jjcsfFg0c8e3bBjeWM12+f0PkC44vAMDn6YSQLiXOeq3566bX7efHcn+GwJ5bOdSYmxzAOpKlHzuZFRSok9oNjvR9YzSrqZiCbPXY2oHY7ptGXszpGwjRx4+YpN167x7YbePD0HJUEKklOb9zh9OYp55fnxKHjox/+gFu37mClIfnSmBlcZPQZnxVJKLKMfPHtNzFWFWM68cnED37xnItPw5vL2n1yvH/66a8nep82sxVcCyCU31kcrRCmYQxXTL7HxzKNvVw/IjJyJ7yOEoYcIoKId5FxcMToUUrh3ISuKgQWKSRG65JiSEkUApkz5FDUgJAI1SCUIefS1BExIXNCkBAiHSYH8ZMz8jOI7P+YOH3jHZaVpNURK4vJmkJgYkAkjwwj2ffEqUdOT8nA6Z3bXPSX+H7DSgX2scBwY/Ck4PBjDzoyeMfZ+VM67wgCtts9VSV49Pgp89kXWC4WXOw2nF9tUFmhpWRzeYVWCls1SCMhOlI4oAXGrkzyhCBJw5WH7/3oQ6aUsAiqPGGzQ6dUclclEFIcGmn2efLvDs3Bl42fcuB+TrAvHcNPq0flXDKrcZoYpgkXKsZpIqn9YSKgDpLQkEJCWwtkQvD0Q8dms2bYbZg1DW1liFKSRYYw4forlFAs25btxTm77ZqcPTpYlFTFH8V5TpYLfNKcXTW0eoltGprGk4Qli4iLDpc8RgvMQRhESvFJ4X1ogn9efG5xMQwDMcYCA4mRcXScnJ6wOpnx5HxD5zxCm4NGfYHuyIO8Vjx0XBSCyVS8v53o8ozBjeAmbFwRoyQeMOG+7/BXVygJ87tfIM9XfP9HP+buW2/xld/9JrMbNUIZ4vac4HpECOSQkFqBlGX0JSXomiiX/HiQfBCLIoSSE1EYcn6hjQEcMv+f2vSupxuvIlI+1HiHiy3nAhdRIr+wsV3/tCySnMAwjjz66AO+91d/ye2647ha0I0j0VoaWTMxst5uiSQWiwXd2JVOU4T5wpGT5OnZGefnTzlZzTltGlY37+BkzbNnTxGPPatlg0uekAMueSKRQMAnj5CZLAs8RQhDN478q+9+j/NkGaeOs8sNm77ndSPLCFU4EOVzF0m9EmjKyyiIFBfMkrj+yq/+Gic3brMbejA15+st88YiRMXTZ5ecXZxzfnnO/uqC05MTfvLgET4k3vrS2/ze7/8+ZnFEGEZCTMRUSFPZJ2IuXXilyjW82+343d/5HZarYz74ySPCQSXpa7/8S3z08CFaFz8DIUSRns2JoR/ouo6qnRXfCV7dAZxSQMSEG7b44YrkNnTbp4Spg+zZ91vWmzW6rqkqy3azLn7AArJUSFuTh1JYjONEpc2hGxpKwRkTOQvm7Yzdbl+M7ZXG2gqtDSCYJk83Oug6VqsVMXrqpirdmATOj6VAGUemyRcSoJCMoRQZs6amMZLxQK7s+74cBnlCC0W/3xCDI+VIOvisvCq2T86Z/X7PNE2HTVQhc8EGt+2sKIrFXOSIhaLf7+nGgXq25MHjJ9x88wskWaBdKQuIxfTPx4lxcrTzBYvlinYx8rWvR4w2nJ+v0ari3r37dH2PNJbTGzchR9zUI2VNTJ4gi759iBEfHM6N7PZ7ur4HKZBKURmLE4diMF/DtSIhegYneHzV48IDbh4tmLU1t0+PePD45Qndx8cnvDdOZBcYu74ogOWMsZo4paKEMwxYAyEFQk74LEnKsO5GutWSkBXd4Njv9jSVhiSY6qZMzrRhdnSEnS342m//Dm9+4zfo1msevfceP/rhD/nJ0zOGmLj/2m1mraZtLOM0kkJgve3YrifWG8dmPzFMI6vZgvs3T7EpM+07OF4wWx5Rr26yWq24fbVlGkZ2+44hFrGBaZjY7vZMLmBshTKGfnz5wuznhhAHOVONf0H5ra4NKW9JORQ1I13gNrsQaPqe9U5RH3yPwJKzwtqG7WaD73a8/cZr9H5CKrhx+wZfeucdpsERx8D+2TO2l5c0WsDUMV72PBl2SF1hCQQ/sd2P7IbE4DI+gakMX/7yF5GfIxr44v726ouNn328n/8UnyH+kH/6m+v/ns2XVO0cFwOTH0nJ88GPf0yznHOz37M+P+fyYsP2as8Xv/g2Vhvm8yW7/QXTNDBr5+ScEEqitEEZTcq5QJykQElQuTQiERqhGmRW5CwO+3EunkQpk2M64N5jEZsov/JKYnF0TK2LkmBlJdqWhNTk4oejRJlExODQ/ozJTeQx0I6O7qN3WcyX7HcdKZapw9jv0T4yonh2uWbT7bBNg2wsdbRMUdD1Iw/OLhiCY7fbs9ntmdkZftgzayxjP7Bdb9CVgjxC9kx9kT32IZKlZR8E3/vRxzxaF+7PzHt6EWlVxpIIKSOlxCj7vLBIqSBCUoioV+Cz8qJa1IuNgBcVyp7/jChcjGGaQBSBjil48tA/b8pJoQv0UXnyqMi5KC9utmv2+y1iGqhNYree6LqelAXrqsIahfcZW80YvWMvPDEtqG2DkYaMQMfEf/cn/zX17IgpOWTjebr7kI17jKcjm8CULFMsilz2oJRWGuQSITQpB3Iu8uI/Lz5firYfsMZQa0WKe7745uusTk/4+OGHZbSnDXfv3eLB02eE0ZUhwGGKUSAQoHIhoJ2Nkcej5J4AOfVUDoLORCuYUjp0CRx9d0a4VNw4mvOHf/QdWJ4Q2lOEqREhoGIgKwluQst0sKovB6owFpUaBrfkr84jl2rJJBu8DpDEAbLz03jPjLhmcZU4dFRfRSSuF//68YrUXBKxqETJg/GcoBj4CIgpYY3h9S+8wVfeeYfNx39NAkbnyM6RVVHY2XZbqrpicAPSSDSG8/NLHjy8IOYifXrn/n1qK1lmxbYfSXPL8nTF8OwRNlb0EsI4FMdPEQnJI1Um58g1IjRlST9G9kHSx4QLkYv1Ghcd47TDTVtqvTxcSoJXCU2Bl5hgZNBGc/vObb75n3yTP/8P/46UJSHD07MzYtJcXK7Zbnd0A/zwh5mvvfPLfOc/+xccn96kmS9YHh8TcSihyD4epOEgJE88mFBBJsbAV7/6FayU7PuB7WbNfrvld3/7N/nSV97mT//1vwEOxW/ONHVDbTRKla7ndXfjk1H8y6/fMHaEoSNPO6b9M7ZXDyEOpOBx456zZ09QRnGyvMU0jVxenENK7PcdSIvUiqwVwXv23R6tJHXKpKlgvY2pmLXLArXoJFeX26JpLovc4Ga9Zb/r6V1EaVGMBH3xWNGyGO2N48huu2O/63FTwZMnJIMvk4pZY5GqEDChcFeGYUBMmaWt6Ls90U/PoQxZ5hdSgpeJ8nzdfs80jgdIaPlnqy3z2QKlNJP3hMK0RklB2zR0+w5r6jL9I5XJaBbPsaqDcyhrqWYzhLFoFG984S326w11veULbx4xTp5912FmDUJqjLHE5IupXy5+4SEksvPEfiT2I24ckUohhcQaQwyBHPMnsI+SuSBlkQy/3E9454jTxPFizmt3bnHv3usvvXLtfI6ta5CStmlxUSDcgBIC2zR0bsc0OZQyhBhBSjh0FF0M7KZAlgUi6nw4FK6CWTMrjsHtDDWbMQFZaaplQ11VHFnD8dERXxlGroYRNTrIjpRKETEOE+t9z8V6ZL33bLqBmBI3T5e8ef8OGocWCiUswxTpwgBK0RwfUTU1y5NlUYsKgTQ6uv2enAWz5RJUaRi9kvjpJvrhL8FsNqeuZ3gEOUWUzLz+2i0+evyMmCOIa4lV8EKyHRyX2z210rgpEqJAqCLtOw09MnmMVtTtAicFqq1YHC2oZ5nHDx+TidSVxqhMihMiCfpuw9VuKAlbCJyPkcsuMMQKhODOnZt841e+/smk4tWsyD9q6X5+fMZrewG4UIQiD53Zw4MaU3N8couHH/2AkAK2bolkPvjxA67O95wcnWBUw/17bzNvb1JVnmbWUtWaYdjh/ERz6PKmnJA5I6RAZkE8PE/OuRB0pUIoTfFap0gvy2sjTIlGkw++NTnlAwzu1RB+ytQ3kUVBiqAN0mi0lgXWpSTqGtqTjslREoaB2/Mj7PKYzr7Lk/f+H1Ly7Lcb1q3GmYHd3vH0astsuWCz2ZNlRZaWKUXGFHn3xx9w42hRDOW0Zbvfc7Ja0tSW9XbH2dWa2axm1kqMynT9nrEfiEmSUPzg/Y8ZeUJVzzAyUx0Uuxpd/EnGHCDr535KznkEiUCEGJGvoBn6YpQOfz7kd9e4jvz83ws0XzAclBGvm/cuTRwQyAXypfrCmxQK5x37bkc/9DRtS3QTP/7RY3a7PdM4YbSlqWvInmFK3H3ji+jaMvmeMOyZVS1KVyhdkXXh6zVNw2snb1DN5rytvs7D87/h8cW79Kzpc8+YJDFlVC4uZumgJ1GU1hSFWf3z1+5ziwsBzJqGPPW8dvuU2XzG4/MnXPUjVbtiWdX86OOH7PoBITJWSmKK5ANOK2bIJEzo2Wb4384zb98/4tj1THHAJkNUFoxB9hEzW7F8/U30yQlqcQMWd3CzI0wOhY9QzRHLOxgzI/YbhOkhFThOEhKEQsaJH6D4l7uMii1CZ3SY49T0CfHpp4Fwz3Gs5cp4daQBH+XhA3mhoBGJSCG4ioN6gDxIBuaUCjZQKJAtt994G795St6PeAJZJPzUk4dYLrAUGIYBBNR1TbVYkmWDD5nT42NmRjHuNjgS49ChUqKtDXlWcTX2oBQ+R5zMuEPX2CYYYyCSUQFSdOwZ8Vog00SMe4Q9wdpM6s7w63Oa6h5JGaIIKBn5vAvunywOL8FWkn/2B7/H2cMPGSdHvWw525/jp4AnYqviOPrO17/O177+dU5unHJy6yYTsE+uyCIrUwrT4InBl8QxRcgRITOmkixPlrjRsz07570fvcc7X/ki3/nn/ymb3Z6mrgkxImLpMOoEN05ucHq8opnNyuPLgwHhdRb7khHzyNA/pTv/iDSsy2YaEjFqttuB0QXefO0e4zQQdxu69QVCWB68/xNu33+NlDxZDEidGVyAvkcHj5smlk2LNrYUWT7RLhp2nWKzu+Ti6oLLiy3n5xu6bkRay7xtmFyPGkuRn2NGiIybPLttz9CPQKZSgnVs2IwDrY5UemSPIWdHgd1JtJAE75i6PTjPbn3BrXtvkYNGmnDoCr1cyKRBJIa+Y+x3kGIhq4uM0JKmqTHWFAKeT5gkUFJhraV3iUY31M7gHSSjkAl8mnCxJ+HRVUXSEEUsZD0jEDpxdDyjaluuuo5ee5IHlw5TE22LeleK+BiYvGd0vpjOHZ6/OOoW0vlm2xFS0etHaaIo6jJKaFQqwhx+ynTaM2sTT5+d8dWvvPnSa3fvjbf41h/+IX/eNnz/u3+J7AQ2KfrNwPJIYmrFGBPJaYRqUcYxEwkGh89wMUWiGIunhTSMQcAYSHnAWkXoEnm5oJ4mGmnIskxedV1xdHJCGyba7YZp1zOOiXEK7HvPrnc82088Gwb6nFm7hNEtX7l/m+PTiuACi+OjwhVwnkZbsLpwGpQgC3WYzoKqPAvdYIQgawhWotUvgHPxvKaVSNWizBEJi5QTNl/y1bvHPLy94j/+aFPEVKQ4GFm2TCFythlJacOsnjiKkkuXqYxEioRIRclIxh4XAqqPGDkjSYExgmfTGjcMWHWY/EhZpOVDxvV7Rjexi5EByZgV1mT+2//qj3jt3j2ikMjPgEz8PI7Fq5pgxM+UkL8mWD7/js/+hgOs8nr/UC+QVS2373yJv7X/lqwtWa0Y4oDQka7bME0Td++9BdYQpMCaFdLUNFA69YAyukDMKbLQConMGSOKHpjPiSwzlS5cx4QmUZoS102B6x6oiAdhkZwJOZdr8xXE+uq8uLc3FTHVNDmisjpMT8p7MLY0xSINJmdoDLFRLJs5N+tjfvDgh6jgcP2ei86y0YlHj86ojldEl1E0VKZGGEmFI89nDL1CaIswFqSmXrX4umGrFVNIbC8ekZ4M1FZz794xMU94PyJljUIyJsNkWmqt0Ln4PmgzUcvATHj6HPCp+HIFP+F9VZwVcy5cyPTyE1sh8gswoU+Yx1mqUmCkRM6lkFAZUNDlSD9M5VqQElLGTyN9irixKxOQBM55dn1PlJLZ0QlZGdrFHXKeIe2elAL9sCcrwdHqBneOT9H1jO5izfBkQ9Zb9osKVbc0ixOa5gSRMsulYdbUICRpsnxh8at8Yf5LPOj+jvfX30XoCR8VjBA9eCdABLQGpSVCvsBz+oz43OLi1nKGEhlTH2GbGR89PudqmKiXN+j6yIePHjCl4vpqVNGOjjGQwuEDVsVkTFEgFO8/uuTZO0fcmbWoOFGlgEWQhCJGQ8hzpnTEcnafHGrGyx5t5kixJw4dhAllBBFDoka5WDrKWR6kUBW9NTwaPU+9p2s1zggIuchkPq8in18RZUx1XZI9vy5ezWb3aazdC0/wUz8XiwbdYTx3jWWTfPnL7xCvHtP/3bu0skiJVVXFfugLTK3rCePIvK5p6rpIi81mS436rAAAIABJREFUDD6BUiSjiFaTxp7RFwyk85rGSlw+VKRKYcXBQC5n5MElOYRIDkXCspAGJ+ZWctLOefu1m9w+XiCFZ3JrYhrIuT5MfMQrQZW97IFTejClyv7GN36FJ9/+A/7iz/4MoS3Ktvy/xL1ZjKRZep73nOVfY8s9s/au3numl+GMyKFs2pBlWTZNk5QXeAG8ADJgXlu0b20Dtnkh6kZ3NkDAgARDtgDbMCHKFkiTGg+XGZI9093TMzXd07V1VWXlFnv8+1l8cSKrqqeHTWk6Rz5AVgYiszIiTpz4z/m+7/2etyxnZHlGL8vZ29nlucs3uLS5S+xAVA1xFJo2W2+DwaNY57LW/gIeF5KuCCId4axlUa74k3e+hfGOX/grf4Urewdgjxj2B8HA0FnSNKU/6JNmKdeuXSNN0ycysovM9N3+3ns0xQztKiLhieKIZVkwzFOqpmVnc4vleMx8OSfV4eB5Npnz6PEZ+Wg7MBLahiTJ0KnGGIOXAhVpWt/h2worPFGUIBBs7+/QNC3j8RQjHXE/Ie6n5JkkyzRQ07UWITRda0jiJEhMuhapJHmvR1t3uMZSVyuySBKtHUO11gEuYVzQJXuz7kuqKMs5QgZyiJDRhQijpJQY27FcLimKYg04CGv73KU7S1Oq2ZymbYljiVoTtHScQGf4+OED5qsVe/0thIpQSiGUhLWRlKpblItDFnwxw1Q1uUyolw3tqib2EUIFp97KW7QChQ9aeeforKEzwe1dqPXBV0jiJKUqQ4VHSY0QHqUEdu2pIhGkaYYUGm9bhJCsyhrT1nz31oefe+4GGyPS9AXGR4/5w699HYNDpeueHjROeuq2pXU1znp0nJDlChXHTGczimpJ3fbROiNWikQqpPWYNkj0pqspeX8LMbIoDIqYSEVY35FEMVhDIjRl21LVhkVlGS8qiqZlXjTgTEjeRBE/9dWf5Yt/4RUQC/JU0R/0MdbQ1gWdK9ne2MIJTxQFco4TIbPs44TWeVzXYbxFKB2sci9g/IijNx5HayrwoXHWm7DWp1XD4WxKZU0wwCRHIskjHYh3XU1Rh+q+6BTV6YK2XpKnwUsqizN0LImTjIGOMZ3EeovyMY6EuqlZtiV12zAtljipuHHlOsI4qmXo81NpQprn/Ef/yS/x1/69/wAp1U+W6PEZ41kzuU/Ir5699UMVJv/knydtqj/iL3v2Di6xsXWZ1bzEGhsoRDLCErLKi3LOqJ0TtRKvLFpZDI58MAqVBhUjZGgkdt6HpKgIyUfvAorce7E29zufQ78upbh1oOMQwiMVIeklFEqJi+LP8PGDh2RpQi/P6Pcy8iwlz1J6vSTc7mVkPshoVRQk3qiUTgpSpdnqDHlvE70ymK6irTuIWgY6I3EJRWtBO1Iv2FQJIkqQkSLaiamqhizLUUqHN0wneKVZeQnbFtdWTE4PWRQlUlogVBk7azBr92pJ2KelkmgZ9g+tBJEUdD74KrUNgdaoJbgO0zXIT+Gff9zxVGXh18SycHYQ58XwMJzDI6majtmypG0NcR4FDylraUxHY0KlurOWedWQ9fqMtndJ8wE6zfBSkeQRsRmCs2xaS6QkWZqgshwjFGXT0OSaRTlnaBybXYJe1ohuxeDyBvOjB8SqI9/cQer4CWhAak+kFbGKECgaH/xHWisBS5wIkjQEmuIzKrafGVz4qkBnKdZ4Hp9NmLeOae2ZzyY0naXzIhg6SdAquFnaxuOdw1iHRK1xnAIrBZPG8kd3plzZucqWdWANrq44O10iloL27AEnt97neHeLVKfEoxFbr7xAdu0a3nuarmZnf4c4i8Nm7mKs7XDW44TEAJ2K6OVDMrlgJiU+DpkB7DP+Fc/OhydszjwTAFzQKe9cE3lurnLeCIMPhzn8eRzjnwqKnvzjSdKcL7zxM7x7NqYrzhhKxdbGBv3RNg9PjlksV5iixOkK1euTlp7MapAR3lUUyw7bNRT1iqIsKOsShGdjc8T21iaj3gBwNHVFU/kgkzhvFrQWbwRdC8WqRjgLdcFPfflF/oWvvEYeCZxtqNslzjUIsTYbQ/4zL4f/6BHkeUIKBsMRP/3Vr6K05t6d23igqlpiY4mFplzVvP/2e1THY4b9AVIpvJbsXL5EMsxRWjEcDUKwLMJVwrN+X53DGkNdVpyMx9x5cJ833nqTy5cuk8UJeRST6HDh00oy2hjQG/SI05iXX3klHDrFxQYWAJEPDvQyyhlujCjLAhn79aFTMZ9MmZ49Js8SZJYyni55eDTn6GTOFxpDEglWq4JcxfTyHo2riSKNw7EsC7wr2Rhu0O9ppFRkQpPGPfLthI1kQF21tG2LEwZjOuq25eRsQVU3XLl6idHmBkKumC8K8n6Gc6GJu7UNtqvIh4pEspaR5fR7A04nMzyCOErIexnIFmRHVS1J8mHQNcvPv9OeVxrbtl0HF8HrQqwdsrMsJ81SluMxne1wxHg8Zd0wK5YULdgITqYznj/YRSKDZEkputpSzCZ0VYfuJPV0RdNUAS1oHWXdsOpaamdRUUYySIlyTX+YkieBdOKNW2MYCT1nncE6qJsW4xzT+QLrIYlidCSwArq6Qwi1DoQdOgKpI+q6Ctppaz5lAvXjDC+grkqaqqJtWqyD1oO34MvApkcIVssV1il0FFC4KpYkWUJTlxxPS567HBFrTaoFUmuQmlXT0NQdH7x/i6N7h2zkA1Se4oWnq2pc29JUJW0d3NWnZcvhdMXpvEAnKVp6Uh368y7fuM5f/cVfYsAScVbSTxOkjujaIElbVR233vkBl69cZnd/G51qnLegJUonICVGBGGAcA73E21W9tT1iqpaBOQzEatG8f3DY9TGiPrwhOliTjtKIY2IpSCLEox3GBQkfazu8fjkkPn0mGEes9nv4/qaVGSkeZ8k3cB0Emcdq2WBpIcQhrZdMJlXLNsOlUoK51EqwsmYKBb4OGdrZ5d//Zd/kayXrWuv4VB1vt/+sHPxs7cvsu/CuaeHxPOexhBQPLuunw01ztUE/smZwD37G0+em0PrhOdeeIvDR4fU9QIlJHEyII5TqrJAaoVQof+wqpd436G0IxExeX+IE4G1Z/26CqECPt9ah0SihESrGCEivH96XnjaAiqePCWlzo1/NUp5LiqU80rRGIstS5quZVWWpElEtkxIs4Q8zwLMZ9Cnl2uyNEbpCJn1UFHKQCg2d65BXaF8Q1k17GxfQtmaKB/waP6YxqyYT6dUWRbMMZOE/mBI3u8TiZhiVWFth44trYd5ucKuwT1xLycfDVkuZggZY5yibCxtJ4kSEM6um949Wnq08EQStPRI40JytbL4TqIV6+SKI7sAh274IYUKwHnvxVoay/qs532owjfGMZ6vKKqatK9RURISUOv/K6QkS1O8TvBOozpN1CkS5Ym0QKsEpVK0kMQyrKEGizeKom2Zn0xBazYv75MqQWpS+iIhj1MefPQB9x5+wMtfeI2d6zcZHVxCJRFFtWBcHeF8F6o7TmGcpWkdbce61+dp0zmfARP4zOAiiRPqqibq9YiSmOV4zPF0FiJFnQABjxXHQUPtnUMLGSIg78MmphTeW4SUlE7yx/dnvP7iJb58oMiMwbUlxWqOmXvqhWFetbiHK/pJztaVlolKyOYVne1IE0WCZ2tnExlLrAXrBAiF9aFxMsVxNYq5oVNmnaEVEZGzNEI9I4t6ZkGc33mudRfPhpgXM84zKlKuD95CrgOMp5kS78U6cgy/E948hch32HrueaYfTNAEK/fB9i5Egq08MKEPb99leXpCRkyvtwFJD6silJasVgtmXUGSKnr9jMHmkLyfkw8GDDc2qMsS07UB7yuDEZIxQW6lbUTXKZbLir39S0gz5ee+8kVuHGygpcCgkCI0zT8NKv5sV8p/puP8giwEUmmu3HiOzZ1tZpM5v/m//x+sVkuq1YLxdMLibMGxgwe3PmTU67G5uUHcSzHf/jayF/PiKy/y3M0b9If90JCsA3rXrSsZdVVRrgomJ6dsb2zy0osv0u/3EUqS5hk3rl3l4+NjjNJMZ1O2hzk66fHyyy8HLN7T3ezCXn6sYjpl2d7dI00jlsuSPMlYzk5YTidMjx4ivWGQD5mMS45OVtx9cEavPwwN3FJguo6yLOknGUmSIGTYAPs7I0xr+fjufdJowiDvk6uUWAUfD99abBloQLOiYlVUjKdzTqdTXv3iy2xvHxDFnqZr8XiSNKWs6qC5X85JtGeYafI0BikZDIZIpSlXFXGUkOV9kiwhTjRRpOi6lnhdcbyIpKnH4z20bcNyucQYi0jXm7sUpGlCL+9xZAK15dzwsrMG6x2tdayaksPTE6oXXqAnIqSKgi+CjhhtpJikY/54gpYaFfVYVguqokFIjWs7yrJmVc1wEYz2BlyJ90nTPkKLp0V3IUE4WmtCNcBaOuMpygqpY7yQpImitS2RVtRNiyIijRTe2aCnjmMWywVKKsr282fwpIN2VfH+2+8EWlQUsyobXBsqBlmSEicJynqmyxpjBc1qhYyCKSMy5uG04uWyZacnEEmQkxgPSZLwwgs32dzaYjGZ06wKeqrPYHOL6WzCyeND0iRhc7SBaTvM4zGrwzlSp2wMR3hnqNuGom659soVlPfYpoSqJslH1GXH4eMpf/Kd73PnwTHzx1O+8NrLvPTCdfZ3N+j1EnrDHlHaYbo2ULi0QHYWZ3+S2fpAZ7PG4aWmcopv3zvk4awm3dgiznOmiwXLdovCxmytzfbEeTJECpquYWtrg61hCIqLWY1bQZI0tAvP6qwhjmLarqbtKuoyEMma2iCFZv/ggP72ZgA5OIFTAqSmxXP12hXSfr7O/z6VFT/b1Hp+8PpJBRbhcZ6u33Veb/0Y57CMZw+AT6sYnwh8numPfPr0PEJqbtx8k+9851ucnRxy+uCMx8cLdvYOONjbYTkredg9ItYRWqdI7egPE7y3RHFC1uuHIHn9d50XAdG87vHI0gwpY8R6TwUZZDQEybfA4rwBYQPGW3ikPG8c/mxqzz/puHLjxhNPIikCAlfKQJFsrcfXDRborKdtIpo8Je/10bEEpUmynBuvvsWt+3cY5kOq5gy0Yu/aJRqv2Kgq2g5uXrvBzsaQfhSDECxWBcu6IU96iCinpyS9fMBsPOXW9z/g6s1LDAYbqI0eWho6CzKOKRuYlYbGSLT1YDrwBu8l0hmktygsCocSDkyHcwZjBY5QDY7jiCyJL2T+nl3jTxPJ54Hr07WmEJzzTk8mcxargl5fhipt0BoRxTE6iuj3B2x0kg9v3edb/++7bA5HjEY9Eh0wtf28x2AwCpI+pYMErDbcvX2HSzcucf3la7jI4GzHu3/6IbFNGPT7vPPetzg8vI+OM577wpskScSqXrFYTmjECiEtyktaI0KwKzXeeYxx6Ehhjcd0Fhn9mLKoqrEkaR5MjqoG7y1ZoskGfSbTgkhIjBBkOsZ1wbBESYmSMjh0+/UH16/JSVHCw6rk9969x83hC/RSSCLFtZuXaKcWdXODy6+8TpwN0SIi3x7Cbo4YboVIsy3oqgVWWoQL0Z8kdNU7ZxFxhOpKNnTL5Sziu13QYHsA9SPSw5+QQImn5dyfQBbqKRpvLR1aP+aT+2F9oXEhM+GDzEHGfQ5efInxnW9ju5amqvF1ySDV+FRysL9F5FrasiCP+mT5BulgmzgbUJUlq+WC7a5Cyo7hMCPfGKD7obRmvVuj2CwCME1L29Qsl3PKqiVXkraF5bIiGQx4/eZ1ruzvEMkwr0LlZMkWUqQ4H4JI7y38hJjv/7RDPJFoSaTS9AZDkqzPF974MkdHH+PWKLrNjW2+9MKL3NjbZX97i2tXLmOFZV4uqXxLkiVgWkxdUXuD1C0ejVUSaztWiyVnp6ecHR1z7eAy169cRccRMo6wEpIoyKYsICLNYrXk+tUrjEajICMIT/ZCY1oV52QqaCyFa4l1RHF2zPjxfWanxxSLBXv7B5xNVhwdTRkvWhA5aW9A3RQkwqC1Yj6fM8hyelmOs6FHKBIZ/TzG7lhODo9ZFQVtT+JFh3XB8Mu5gEo0TYdCkkQRb775CgfXdohTT1EWLJdLojjGurAOy6amqAp2toZsDFTA7OmY0XCDs7MJddOytb1HHKckeUKe90IW1UlAI4guZA6VVEgZmu2Xy2VomvTnJpeCNE3X9CsbqjNka48difOGzhqqYs5stWK2KEh7gfkupECrKNBntlKG2Yh6VkDj2dt1VEWFE5KjyRliMqY/sMSDhMFen94wIko1whOoM5FGAXXVUlYVZVWFJm+xria3HVniUQryPA40uM7ircXg0ZGibVuUjoORHSqAID7nuP+D2/zub/0D7n3/B4zSHoumDRpzEQy5hnlMP0052Bhy9+iM8Zou0zU2ZMGk5qzq+MGjQ/b6B+RJShxFCC1JpCBKJFGmOLi+S73KyfQGw81dbrz4PJ1p8HXD5OiYwwePmS9KsrTHME1JREfRGSaV5ehsxuXG0BOC+uyUTaXwdcdkWfKNP/4Ov//OhxRWkaL5k/c+4s7dB+wOU56/dsCVqwfoPGZre+sJAUt+Amd+8UN4wSAfMehvcDI75f7JjG/dP8Ft7JIlOYONEeP5lLPFgn6q2e1rUimDhNi0GFOwvdlnONrENQ1lmjKKR6QiB++IkwQZJSR5FvDGtqZehEbhZTljVs9ZmJJBnlHVNa1xlF2F7PWp6Lj94B4/uH2bl199IyTEnpEZQUiqWWuf+twIsU6qXKyZnv8R8hbvPnlh/VGPGaocT1Nj6wzgE5VvuFcRJRu88PJrfHznHbY3NxmfNXzv/Vt8iEJ7QR4n7O3ssH9wwO7+iFhvsZiMUdKTpHG4TggJYg12caH6EOsEpeJACHKC2XTBzvYljO0QQiOFXSdoOzz2KZHIObzwF+bQvb9/gMejxJpgJYOB6fnMBNCLwwmoGk9nGrpOkOcxaRKhBbz0+pd493f+IZWrkGnK8WzMq8/vEBvPzcEm924fUvcq0udeZO/6VdJeDxUnNDaY6NVNi2gNzWzJ/ftf58r+AVd2toniUGmYzE5AaWoPs9ZweDrHORXeYmvwBNx7KJUahLdI75A+AGqEC0lQIRxKK5JIk0QXhNv61AhJqnOvmidKNxEMTYVSjGcLTs/G9Hseopg4DjJj5x1xHCMijUpSnn/tC6TZDmdHR/T7KXvX9jEioOI3nnuek8mE3b190qqjm5f0ekMOru5RRQ11V7AYF/w/f/oOp2cLRnFEalsG/T6jnask+QjrAgSmqud0aYVb96G4bh2oS0kUC6RyxHFIajn3KZXhJ8ZnzqoTCuss/Sji6mCLnb0DHp7O2b16jW/8yduMZwv6WYSWUApB6ywaERwlhaDDBe8GIXEQsIRC8q3HJW/eX7KfaZJM4vIhve0Y6oKTe99E+AglI/Sox+C5y4xe+ml8niEiiY4GYFpc26JsB87Sth1eSiIh8RIy2bCVSpo6Q7gUExUhhnhilPPDM/KUphLWxMVnoZ7Fk8knWK+nV4WQf/BPqFGhwdfjlWY42GV373nmdz+C+ZS+9gzzLLx+6dne22Y8lrRe0bgGVc3RXRVoRroliyJGgxFpqnF4lOmgFSxqQ12VKIJbbmMMq7KkKMpQDTKW2jp8rImThOPJivc/OuaVm5cZDoZE/W3YuIzXUWjQBeZtQSQ0G2xd+Bz+04+n76OUQdOqteONt17lvfcOmI7PGGwqRGNpTIMVnuliTlEXlE1J0kvZv3pAlmV4gmN8VzuUXvcOSE3dtpyNp3z/ww9oqoovvfVler0+KsnwUnPro7vcunuPqm1J+n2UVHipuXz9JnHWe/oM1wmOi6r6qDgGNHHaw7cW166Ynj6gXkxoyhVZ3qM1kgdHMyazlkVR0x/10bLDtBWls8Qqw9uGo5Mz9i5fJZae2Dc0OjRY572MrdEm2kiIU7ySRFFEleQIAfPZDJUJameJRwlxPyJK1tW02ZyubUmSnKqpKLqaRVGxt7WBTASDnkJoQRzrUBUaz4iilLw/ZGtvj7PxCcJp8nSIIGT6Quvz558/ISz4cL1azCdY0yGQeGHBQaQTRqMNDI7aBtSqWjfkNXWN6Tyd9xRVx+FkyjDZIvcWnCWJM4SSOO3Q/RjahrpYsJovaduWxhiqriJKJWmekPRTkixC62jd0xYMNl1ncJ2lKGuWdc2qblgWJcQJCI11gtaHZsCNzW2MXWGaFr3uhZORDhQpQvaubVuaCzCT+h//9t/m7PEjcqmIoiz00ViHVEFOU6wq8jilE45hHoPwnMxKvJQhm9sanPJ8//5j9odZ8JrRjkSF6re3hq6tEWmMyjXzyYR79+5SdV04GDoYH5/x+PExRdORRjH4irKpWdaW8bJj3nrGRw/51u/8FnJ5hrxxiaaX8uHDE/74ew+Y+wwvBZmMiGNN5yzzleGjO4/5+NEx/VGPG9evsb+7RS+NGZ8ck/WTzz13EKpRzrsnUkm/Dkrz4RbPvfEXuHd2xveO7zI1nqQzCCHY2tll/OAhx+MZgyRhnCjSOCJduxCvqop2MqERnt1+D608VTVHxgRqTBqT9wdcuX4d6w1FVXDkz5hOTlkuJyzLGTKPWS3n1F1HMZ1iOoPtDKdNy8OT73H31/8Wf+Nv/Je8+cZbnJ+k2rZba7hV6NkCtFJI758YjV3kCNZ5/ofvfNKY7QkNsqGgLdfkSOCJDAnsOiEl1nBricB5S2UMD44WZDsvkPYPSOpDXn/xgN2tEdiYTEiu7O9z5cZNNve26fehqQtaW9FVDW1l0IkL1bm1v4/3jiTKiHW2fl4WpTzlssHvCYQTCB8Mgp1QiGdy3l6whs8AXAwtKtKhSqh1QI9qJdEqfFfr+8HTdi2maTFtR1U3dKalSSKyNCHZ3OPaF9/k/tv/iP1RxGS6YFWW9HVKlsZsDgac3XtEM28ZX3nEcHuDzcsHDHZ3aFYtDx8dMr/9MW1TooRn/2CHXhLhbE3RtpRVi/CSqmo5qwTH8w6hU4TzASDkHd5ZvDPhu7dIzJp4JFEyBE/nDu1CXMyOe+49A/zQuS5EFEJKWNP7Oh8oglIIllXNx6cThhs9iJdsDASR0ljvMUCla1QeofKEay9cZXd7E9kZZBoz2hwR9XrsXL5M78pVkiRDjC1NtsDurJBRi28aqrLk1u2HPDgdkyQJcZby+rWX+Df+7X+HvevXUVqzqheMZ0c0LLCipXOCzob9RrjQ4+OVWGNyw+s0zuE+Y+l9duWirlBC8uqLr1I2hkUFOxt7jMsa7Tuev3GJ5WJJsSzpnMV4D8aQJSlCBS1640LTcDC+67BCMHaC3/nuIa/v5bwy6Icuee8xUrKqKyIt2do/IN3aItvcJ18vdrdGtyJ9+JB1ZdjMnSfJcpQAoxJSZbg2yHAzgWwjXLpOQdh16PjJLq7w5vtzhKr4RHn1JzGeFkieyZiINY6XcEw6R+Z6CZHPeemLP8Pv372HrFaoqUE0fVxbgzVIIRltbuGspDOeunN415LGit6gh47ScFHDI73FNw3ehQymEEHaVtcNZVVT1g1N05FnEd4HQo5JNVbDzMA3PzrhzumK529c5frL23SdY6AcWlga53hUzEnjlBd/ojP4TzDWGacnNwkbilSenb0tfvpn/zk+vv+QpmwRquPuo3scHz8kAnp5zv7VA169+hpRnuHOL0ZSgvAh+2s7VmXL2XjGhx/doqqWvPn6G9x87gZJkkGc890P7/Bbv/01vnf3Y9K0j5IxWZpTt45F2RKlPTwBKOBZr4cL6r/QsUbJhLKqoC5o6iWmXdGZYPalo5TTyZzxdMWqC9jZKLIIu6JrU7RPaMqWUZ5weHZGqVKeO9hBmZbSrHAqJkoUySCmm7VspAl5nrNarRj2gxt3lHesCkdpDSQSnacUZUOxmFOWK4QXtFVNZQyLakWcpUTOEqWeONEYBDGCyXhCFKdolTDY2mHrYJ+7jx7QNp406SEILug6Ojfx+3xDCovwIbu0WExo6zps/tIDkjhK2NjaRiY6BBcEjKM+B/x7j3SKZVkz61runh7xwnZKGmnwOjjKWAvS4RS0wlC6msrVeAkyl4yiHi6XSCUR0mG6DiFiTGuC30fdUTYts/mS8WLJ6WxGUXUMs35onI9i5kVJP0pYLVbkcQxZ8K5pupY4i+n1ekRRhBSesiw/0RD7445Hd26j8Pj+gKJtsAgMAcE5ilOKqiZa1kFepCS9OEb6gFwMJuuh6l0YxXu3TxjkA5IoRimL0qHZ1RkHThAlKXKksdbSnIyZTZcURUXXOWSW0YsDYGTVdCw7z7TqKOuOyknOTg/x+zmzkzPenkzZ2hxwf1Zw52xJqVNiWoRKEaqHTjNqDZ1z6E5yclpy//i77G1tsLcxxDYVN68ffO65A7A2uDk7bxGS9b4pUVmfwZWbfPvjY46Khs57ZFPhrSWOU1SU0piWyXzFaaJJIsVWrrHWU3cts+kRG0XNa1cP2OmlWFcwq4+p3IDc9klMyaJd0rWGtm2ZF3PmszF1uwQdlAfT+YppucKsSryXzBY1x3XDyidM7t7nb/6tX+e/+a/+a27euIEUcu0vEFymhdJ4PDqKcF2HtXbdb3ZxlQspNefZ4vPhcSAc5zRp590TSfI5o1+tpUqhLvk0PPEi3LZ4bh8+4Lu3z/jKl75MPLhOOX5IlrZc3h/gbZ/YOUajmLwPVs0pmopISiIErelYFUtUnpOkKUKIdUJChwZmr9ZoegfCBs8faRDCgV0HRiLI0CTyUxuE52KUAkoGKI8kODKLQIRGynWwK+QarhHh04S2aULl1jmq1mG8IU8jrr36Rd79w/8LPavJE83dR8e8cOUaKlPo7YSoqLDjOXQg5hUnD095GElkkmCMQc8WiBRcDnHWx2Np2prT+ZR51aFw1A08OG5ZdZphpBG+xSEwDqztsNZgnMGugwwduAbrqkVI3DrnMNaGa/HnHD+8jsWTwGUdXCBx5+fCc6SqAAAgAElEQVRLEahk0nm8kjwcz9jc2kDFnkhJBmlobG+8w0lJEqVI4VE6Jo6hqw1Z3WNYpjSrlqaa4q0jGioSn2EsNL5B+gZTFTw+POL3/uQdlIe9Xs7zB5f4pb/2b3HztS8w2NygaVdU5RQrCohaOtfRGYVxAXuNcwi7TspLjWeNQl6bAf5Z4zODi16aoJWjqjvSrEfW73H/4SF5LHjl5lWsjKkWFa51KCRWhlJdbTp0EiG9DE3bzq11zOeRHdxb1vz99yf8x7ub3IjPUOkeYrjD869/ib1XXyXd3kcn/bXExuNti2wrRFvhmwpbFhSzKa21ZP0+WgWmcCQVTlqe6ydcFR2HytI4i5Uety5/Or9+EmupAy6UnoVfe3RcENrtzxo/rEX99M9D44wUksgLjJKwNeDam6/x6O1vEuNoO0OmBZlWZGlC3TpwMdYpnNCBl+0taaSQSRTKmT5cZJumDq7TSoF1eGMxTUe9qliuSpAaFac0pYMowSmJTCLqqsJZRbtsOfngY95/NOUvu5SbO/u4tXmelIr2z3Fu/P91eIkk4a03v8Kt97/Hn/7h12jbDh0JkkGPm9eu8YXXXmV7f5v+aLi2ZgtSNesMdV2xKFaMZ1Me3HvEx3fukecZX3rzLV555RWGGxsYlfCdD+7wP/xPf5e3371F11mgwTlPFMUkMuHdd9/jvffe4+d+7udwayTxRW60Qob3IkszxpPHlEWJR1IbkFFC3XacnJ4hpEZJQZokpIlGKxE+y8awLFuG/SE6jvjOrQ+IdcS17QGqrbERoDRyGJEmSfCrmC3WcqKa1aqgbmpMBkrFqEThhWG1LCiWSzpr0TrgXOuuI+/lKN0gkCRpgtQxRdnivSYZZIHvLmO2dndwQtAaS2dBxRE6kkFRI8WFZkO998znc+o6oHIhPIZWmsFgEAhWbYsxJqguRdiUrXU4LSiaitZ73v3gNtlr17i2NULakLGVXiBkTJ5HxPspg61d6qYOiNmmxnpHJ+sAVnAOax22qqmKkmJVUNcti6JiPJ0xHk+YzhY4oRgKQZalzFcl1lnm0tF1nn5PMBoMKavQm3F+sGvbNqwXcTFzFwnJ9uYGaZ5jlWZ2eEKxbEN/T2pIo4TZcomVAu196KVIY9oqVB6EkHihESJiUXZ8cOcBvURwZXfAUEboFIxxOOuIpCbdGJENd9i9fA1vLfWq4OTomHuPj5hMZiyKmso4lkXHahWMGouqYbpQnE2mJECcJBg8RdNQO4uRAbjxqCqZeEfWVnjXEa0b+p11KO9IzxYMspRRv8dJK/h3P/fswWI2R2lJv59TVTXGdGRZD4vl69/4Jh/euU/VmlAJ7zpc05DGES++/CK+XDA7PuTB2OKlofMDIq2pTMvxvOTxokI6SK5fYpglJFogYsmiWWDLGfbM07Qd1hgQLWCJegl1a1m0lmnVsqwbhAmH3QezBUWcYDU477lz9y5/89d/nf/iV3+VF55/Hq8EljWi0wfD0U/0H16wlOxpcPFs9eLpQdKfSxvXWGZ4Ci+Razm3dhaPwElwUtJ6y4OjQ/7g7W+j0wMWlSHfusrRvT49tUQJi/cVpZWMqxXR4ojcK5IEWuVQag+DYlGdktoNpNHgJUJEZHEfhFp/BQ8G62G5KvBeEoS0oYLivTvHH376dYuLbUj+4a8nSbpn+gniOCZaU/yaplnDa8K1TymNUhHj+Yx2OMJMSw42S7IsIc01g52Mdt6xbGb0bMKot00H5FnGbDJl0k3RWUKUpKAsy6ZmVRWcrQrqzqGcZ1HCfLVGbXNuLBjeS9NZus7TGUdnHNZ5Ap/p2bkLa6LrOtru88uifuR6Xgesn+QECSIk6+I4XkkqZ7l/ekyadEQ6QnlJmiQIr3BNC0mLjgNqWaQWbzoW0zHdqmJna4d4UREjMcUpj8wcq1qG2xlt2zKervj6H3+b4+mYa6NNttMhX/2Zn+XglRdIBn2s87SmwfkWHTtaX+FMQJU7G75bE/Yfj8DbdUAhQvCN+jGDi1RL4iRmOltwc2uPyXSFbQqMMQjT8sFH9yjKDikEsZA4HI1zOGeQrUNIiVKK1hqeiJF8KF8theJrdybsb2n+/a9eYjt1jJIeo2yENZKitvQjjRIxRhRBO2c7qAqa2YTFZIy3lrTXQ0u5LmOGiEpKy0sJ/Ewv5m0VUfseldO0ztNaS+s91nmsEDhNcL5cBxlrkdyPu8Y+Mf48A7hzqdSnm93OaxgehaPBMq0L7ozPeHB8gt/dJdENo0QT9TKwFmEsTdmR9zaJe0NUnNI1FavFDG0tcRIavOs2mEoVTYMh2LorBFUVDoRt58g2B3gVoTKFUDEyzYkaj5YZUkRIrxFWUS07/vFv/yNmR2e8+vpPsX39ObQzzEV7YXP3ecaPnneBRNIfDPnXfv4XOHxwh5NHHQcbQ165+Twv3rzJpf09+ht90BJhBdZ0dF1L23TMVks+vHObD27f5uzhY67u7fOlt97g+nM3Ge7sY3XKu9/7kL//f/5D3r31AR2Sra3t4NBNMMcRouPk5Izf+I3f4Pr161y/fv3Jzy9qpElGayVShuxlqIcpZNJDxZ7jwyOEVKRxRkeLxBBHMYM8R0tFpGMaUwaQQprQGMs3v/Vdop96ncu7PZz3aB0qa1JJEpFRryrqrsV1FqcdcZJhdEukAh2lXK4oq4qmNSA1jfU01pAO+hhvUZEniiKEjKkbR9M6hhs9VK4RMqasQ4Xn5OgI50DGKfPVkq3eJpFwa6T0BVQu1tUCPKxWq5DV96HB0XvQWpNlGXEcY4sqNJTHYXNRSgEtTVOzWCxwUlE5+MNvvc+/8s//DFtZhsAHtrlQ6DTCpznGdOi6Dl9NgjEdRW0xjcF56DpD0zQUyyVlWbOsKsaLFZP5nKIoEVJRVg3GWPZ2d3D+jKIqcWgEkjTSvPjCTd55/1YouRtDFEVPgqfgWvv5kwIvvvgSZbHkpVde5v0f3Ga2XNB5h7Ce6WLFwdY2dVdTj2cka1f6XpbhvKBsWlAa51UwAYwillXHnY8f40zH5T2BUDFaR2jdoURJPEiIkpxIK7qqwtoGa2uECLKCZeNZtIKzRRVQ3dpgfTBq1ElGrk1wxY2SYGgmFSrL0DJiaQoaZ5k3Fmu6YFbmCU7tWpMnMaqpGXSKM7H63HMHQUbRNg2rNfVGKUnd1Hx8eMTf+V/+V1atwdiwFhUe0zYMNrf4z371P+cf/9//gD/43Qnj5QodRxgh6fd6NJ2htJ5VXXPnaMze5gbpZi/gnrMImWdBAls30AiETNG6BSFoLJTjJXdOJsyqFusteZqyqiuOVyVylBHlCa4scdbx3vvf4b/7tf+e//Sv/3Xe+NKXcM5RFgXDXp88zdZeHOefk4sd5xnpT172z/EHMtDkxBr3fi5YWUu0nHPhw20MTgqMk5R1w+0HH/OdD77P4emMg4MDytKRDC9he1eou0OickZdlPzgwZyrVy6Hxtx4i05mqKijMXucjksu9VvK1tCZmkTnbAwHCJEALiQChcA6y+RsghcKITW1qZHeEQkRerY8T0hST1+z+NR9P+44l6p9OsB4Glg860QthCBZO8cbE6qxAolWEf08Z1UoZsuatoOT+ZI9JYJ7R2zo7cSkPmYpG+puitYRy9kCJWC4nWCUJ0olxnW0wjGpChaNwTqJKWsam5DmQ8R0yrnHhLUOazzWgrFgTCj82KBzCwHGk9cQXu+TdX9B49nz3Pk4v3kuxVI+fHqNd0HO30spjeHobEqsEyIRGv8TESOtwXQdUgdjQ6EdLgU/ssxXZ4w/fgjGI5XGK4XY7rF3sIPSYFvBR3cPmS0bdnZ2+Ytv/TR/+at/kedeeQG9OcAoaJuCqi0wvsbLFudbhA09v94BFsSahNw5j7EW691alidR+sc00RtkKQaPRzKZzDh8+BjnLYVtmE0LvNcgPY4gI5AEMkXnPMI6FOHDEHK/Tw+LjrWLobH89rcfsJFp/s2v7JCKKfYsR3mLXC4xoyWy10NogzIGt1qxPDliNj5FqeAAm0RRYH87i3eh+uBpuUHHF43nSDu8TCkUNM5TSUnjBbV1tMLTCIexHuMsTgVF4wXBF54ssvNN+4lz6TPN3c9WL4JDs1tf8KDzLbPZCR/e/ZA/+MbXOH38AL9aclY0vLq/w3zWovb3kGhs50J5dX3h1lEMCFAldbHE+8CUrpqG+WrJrCjokGRJim1aisWKom2I0wwdpzghGW7vcPvhI1oEsrGkSYJpHSqCrm5CN4+R/ME3/ohv/Onb7Fy+wu61q+y+9gLw5YuZxB9zPNvjAs+WKSFsQILL167x87/4y/xvf+/voDTESYQ1HbP5FEOHTCK0iHDOUtcVj48Oee+9d/jurQ+omo7nLx3wpbde59pz19k42Mckfb759rv87te+zoOjE5arFUJFSKnp9QafuPAUxYo7d+7wm7/5m/zKr/wKSqlAkrigTVfrCIdEKU2v12eqIpK0R39rD1uVxNkClg1dF0gSmxsD9nY2wdQkSUKWZDhziqkbkiihl/QZTyq+e+seo+wlRBQRxZJenCOsCAjHKCZZr3VrLc5ZItUhhAyBa9lRlYauA4elci1bBzsICf0oJUtHlGWFsZpiMsE4Q1Ev2RrucnY2Jc1GPH7wiAcPPyYbjEh7I8azKfFgg7zfD9jrCxCVhQ02JBmKoqQo14ZGAHikkmRZIGgVixXWWEQcMp/njtiyM1RFiekcSmc8fvSAP/rT7/DTb3yRveEA5d26ac7jCBx2v2baCzzWdHjr8Tb0cVRVxXyxoCwKmqZlUhacLQuKuiFNc4yC6apmMpvz0isvU5QFxrYgJb1eyqCnSWKH0JbG1CRWBTlR0zw5VFxEQL+oC7RWfPf7t3h8fIY1gTZkBZSNYVU1CKHonKGtO7zpyJJuDejwYS5ZN6lah1IpUsZMpktM09G03fog6LBtS2wcSVqhEDRlzXJZsFrVlGVDUVsWjeN4tmJalBzsbhMhMB5WTUfTWfb7OSePHuPsiDwJDbez2QJBg1Qxznuc9SHNI+HcVMBKSbuudLvGMDsaf+65A0j7PcpyhRGeKFIUdYWxlr/79/5nHo8neBUF7bPu8MLTuBbjDGWxpClLRv0+s9ZxPF7gRERLjDOWuusoq5bD8ZwPHh7TS69wZZQio5gkzsiznKpqqOsGpTQ6djSm4/FkwbSecrSqmBc1/SzCdS3HixmVg9h5IiGxeKyzxFHEhx99xH/7a7/GF956g5//q/8qb3zxdbquQ+U9Ihm0+5+k6lzM+JEeNyJ0Mway0jM0OQFS+SfBhbUW6xxGSJrOMFkuuPvokPuHjzker5jOS3a3BPXKofQ2w4PXGD8o2E09mfBU9ztqNWJ75xKbg11IhqjNmj/8/Y6qyRk9B0nlGfZi0myAEBpnHFGiQCqs96zKitt3H/PFt/5FhJKUTUPblOxvjJ44Sf9oAc/F94j+aEXF08DC85SmFUXR2hzW470mjmKySLGxt8Wj0znLsuTRvCBKE7ZSjdYCLTyGAOGpdYuSjixJUELiuwBBEUrSWMeibpmVHVXjqesK2dVs7u4yQqGPpiBCsBCgAR5nBcYKrBNrI0Iw3hGvn7BzgbYlRFizrfn8a/CHK3KfONMJ8QSa43AIoUP/WMhfoVTEcJjRdCuOzyYoL8A5hqJHIiWurnBaIqPgSaNkSiFXWNUhowjTGHykSfo9+lvbDDZH5GnKydmC1gr+pb/0L/Pya6/zxkuv0E9T4l5CjaFulpTLGYvVKa1YYuIu4LY9SBQKgnTeC/DBK6mzHuvCLiVEMM3+s8ZnBheRlGR5TttZDh8fsZjN2NzaAutZlV1gDHuPJ+jWrBNBfiQCaSBkBD698D0C7Q0bAlZG83vfn3FD3eLnfuplODGo8WNUr0e0t43aHBAjkZ3j7NFjhHds7e0g1r4akVawfixvw5fzhoGt4e4jhs/3SeKMWnpaKSgR1EhqBRaw3tJJaLyjFVBbS31BH9bVakmW5SyXC+I4IcsynrCrn/SOr8kPPkhvTGc5m5xx7+4dbt/+AScn9yjmc5x1tJ1nieaD7/8AUdVcGvaI/ClyX5LHKd5ZlsWSwgq8rtYbo8W2LVGiqZqKabngbDxh2ba4KGFZVGgpQzUqikmzjCjJaJ3DIpguV5g0higYqBnToaPA2nbe03qJcA5Ex9GDOzx68BHqnT/mP/yFX76QOTwff14V6Nnf+eyf+/XUBxnXW299hbsf/X+0vdmPXtl57vdb4977299QxWKRRXaz2c2eZVktWZaOJ/hIHmI7DgzhJDfJVS79FxiGHSB3vvJVAF8mQI7hBAfn2LGdxIkvbEu2RmtudUvdrWZzahbJGr9pz2vIxfqqWjKOdI5NZgEEGkU2yG9/e++13vd9nt9zk6//3V9x8/vfp1kumYxHjKYldpTwgG3b8OjgIW+++R0ePNjHZgXPPv0Mr736EtevP8P2xR3IM/7+a9/mq9/8Dqd1z4NHB3jfk2lJjJDnBV3bpQ5xDMxmW7Rtzec//3l+9md/lp/+6Z9GKUUI4YkUGDEKjLGARGvD6XzBbDxB2Izv7z/g0t5V5ouadtWyd/kSL7z4DPXyCO/AGoNRBiM1vu0pshHjrKQtLItFRddH5LpjXIyxVlPYHJ9pUGoTQOdxw4DzjuBburZn0SzpakfTOqp14qhvX91FZxmTacn2ZMJ8cUwkmfVO5wtsoWm7FSeHcHy44NKuZXE8Z1aOubC7x+zCDpeuXGFdLbkYL/OkNtm0QSTnZ9e1VOs1wfskZSIhAMuyZDQasXCPNpKAtMGe4aZ1hL6q8b2jyMfEqHl0OOdbr7/Dr/z8JxMvfEjFnQsJNer6IeVDNF3qXrctTdtQ1zWL5ZJqXeGGgXVds+xamq5nMp0iUaxP1wwhcHxywgshsLNzgbquEFqQFxolPev1Mc7VhJAO6HVd45w7l+U9ifXUc8+yszXjH7/05TQJy0ecVm3SG0tJOwzk1mCznKqqscpAiCiRglhBInyPChGlJVYpxuWIwkA7OO7d26ep11y5vM14XJCvF1iTEYOkHwJV1TFfVizmDSenNQcna05Wa4TVKKMY1g0+Cupu4ODohBtb19FI2nWNx2CkQYaAFBLh3aYTm1DnPlFBMALMuVFYMnR9egc+gdUHj1eCo9NjVusV3g28/p3v8Def/Swog4sehCQ6j88kXkR89Lzx+uuMi5xcKS7tXmb/wUNOFzWgmIxyJIK2rbFasX8858I4p8wvMx3nWJ1hTY6SGUb1m3BGaNqB02XD/cMTjtY1bd8zLhTz5YIheMbTGYu2JgvjJMNUyftkjaGqa770la/wrW99i1/99C/xb37rM2TaMJtMNt61JEs+oyc+idvvP3oPn/9s8+4/N+BxLtWOEUJMqfeLrud4vuT+w0NOlxXr2rNcdVTrBtd5fBsRjJheeIbjg9t0yzWFzbl0dUJQOfN5zSjvsKWh9kvuHnmuX/9J5OguSo/JR1sonTEMjkypTWieZLVa8t7dW+T5NpcuXSYEQRCC+48esj0ZUYQI8ocnFx983v9/Zcj/qa/mg4O1wmOSYiV6didpCv7W/UP2FxVlZrmwt7Op9zyjPMNahcpyhFLIIDBCMMREw0NqQggsq45V3dM2jmFwXL+8ix4ZPv7cy+wfV3TrRfo3hID3Ee9Tw9iH9N0KJbFKk+m0p6Uctn4jifuBAOXHWFrrzVn3AxXK2YREbuIZzoP1koaWuJHnRRcYFyW60ISu4/R0jnAD3nWMpwNFn5Q/tjQIY9mebTGeXqRd12QzUEIjRwVqXDAa5WQq2RGUzviVX/svuXr1GSajCXJk6YOj8wPtak1TH3Dw6B6PDu9z8eoUswVRqBQqGDfwg5BIaVKKlF1Dkpn5TbCs+ZfSokaFYt3VnFYtJi8opiMG1yIHh69XFArwERegJZmyTRCYDR2qiwHHxgQLyehIiq3vvcTZkthXWN/x9nv7qKHixo1rbG3NMAsJB+8SYsAvWirn2HrqKZ5+6WVUphHSgM4IUqUAy431ChEwPhKEY9sM6Ju3KT7ycTQNHR4lIYswCYoQoSfghWBA4qVgUJr+CT2s//P/8j/xiU/8DC+88CrW5AgsMchkMpMRcEThCTHQVktuvfcub77xOg8ePKBpqmRG8g5LQPqAlpp2yGnEjJO+Y7v1zKMDmbF3cZc8RoRbE7smjVaVSh0jFVm3sGpb7h8cUvcDk60tIinxWEnFvA0Io9DZCKMN2xcu8O1bd1kJhcmnBFFj8gxfe2yWE7zfjJXD5r9FYiBrjWkfXxb1o9aPKiB+1OHon/48IgibMWqMAZ1l/OZn/muMkvxff/bvuXn3gLIwBBUSHn2Arqlp6zUiOLYmJZcvX+bGjed46qmrTC9cRGYT/vbvv8Zbdx7RNgOHh8ccHZ9isoJiPCbLDERP01ZkWYb3nqGPrNYrmqbhj//4j9nZ2eG55557YpML5yJFYSiMZTV4/BBQ0lIv5mgB1XrJ9s4W5bbk+Wev4/qKqlphdEBmkiEMGCXopWQQkdnY0CwDrZPE4LHa0jUL+syiZIbNMrQ2Sc7ieoQPZFLSDilxu25r5k3N/eM567rhyuUdRuOCLFNsb8/oup5144jCMp8fMwwdUkU6AUPvqNcN6zyFAtlyh8nuHtef/0mUklSrhyyPT5k+VcATMDdqIunrl+mQXy9wrsWE7HzsXxQlo3KKj4ohpg6ZAKwUaDx9ENR1w+B6jNUJxS0kx/NDBuGJ0REE9EBXN7iuY+gG2rqmb7uUsVEtU6heXbOuG5o+Hfx65yiNZmsyxpYTTpY1nfd4Ian7jv2TU2ajEqsUNhPMihHCzcm1Q0eQGDw9/XCGDRcYYX88V/A/c33oIx/nK1/8IkNQbM22MFIzySSda/GDZ1Qk2apzPZkUaJXCx/o++W1MABEjTkFUgtIoZhlkhcL1Bt/3nB4uWM3XZGXBpCyxxuB8R997qmrgdF5zv/Iczlcsm3YzC4KDuufheiAoSecjt/cP+dkb17n+7BXuPjiAAfbKESenc2otyX1AKYGSEhHO5DU/rK8WIm5Csp7MnuHnK6IV/MM//iN/9w+f5fTgmEePHtKLtNlLwLuUSJ8FTQyJxvbu/TvsaoGWgcnIEi9d4P6jA+bLOUaVKC0RBo7Xa4TOUO8fYawltxOuXizo/IAPoMcThnagXRzy/uEJt08r7i0rFl2DMYZ1gMWq4vLeHsEWnNQn9EOfvFahTwoAv3nn+kDd9fzVX/0/fOHzX+DVl1/hk5/4BP/qE5/g2tNPk9tsQ595MjLYEIdzdOpZflWMKSdi8+bfcD6S16ftPYuqZlklUl3bO5qu53Q+Z7FaMF8tabuO4Hu86zlanrIcekTUWL3Nhb2P8aCvacSCLO9RLnBYZZR+QVbnNE7zzt1Dnn5pjrWCItMYUVB5jxIDYwyjAHW3Zv/BAYtK8yu/8IsJjRsHnM64d9qwt1xwdVKA0MS4mc5u5J+p5nhCPjMp4MzETSIEaUAFwdnMP7iQMmmQyE2jNGzOe0JIVkeHRC2QNiOXgacvlNQ93DtccDRaMq41Ozaj6ATBK7QpyCcpuDZ0A8IFVD7Bq0gXHYtuYF4NrOuA63qe3i25NBasoufisy/y4U9K3vzW12mWRyjfw9ARh5bgHcQeJQKF0mRZQWEzCq1wBOpesu4a+hD4scij/8w1ufg8I6uZHz2A0CdukI9IkWhfnBnxBRA9MiT/gpRpf7MmY6oFQUviMLCsKrq+Y7vpmEw6Su+ZhIDC4zLB1vQSMd9CigyldArVMwkV64ks244rz97g4t7TWFsQY2SQgdo3NPUJ9eqI+uSU/QePyGYztp96lmA6bGjo3UA3DFRdTRdS5oWOkcx7YuxRIkEmpFSYH8NB/rHFhcRTGE2YjMlGJSE4To6PWSwqpAjkWpLZdMNnfdIGS6HpXaQJHgm0Gz+5F4KI3Iwlk+7SZhnBNSjl8RqW6zXvvvsuVkmMjBSZQUtBpjIuXr/O7s6FDfUoVclCppHi2VhTxoiJPTJavLIIYbGtZyoVjVKoCDqGNMoRnhglXUxFxtmrx0NChT2B9d7Nd3iwv8+n/vWv8iu//BvJE0JAyJAKhzjw8ME+b7/9Pd55+7ss5nOqarVJ4BQImUxISmkinhgU6/Wa4FM3WsRAN/QcLRa4GNgZT4h+IztTGhdSySVUYFgvOTmd4yNcuLjLGVpVSpW0ij6k6cpoRDbKkVlG5QaiSsVHMRrhhwEp0989pBCT1Inf0BasTQfnJz2k/UGJ0+N2WM/kLWd0EO8988WCr377Db76+vcoROTFZ58hhI6UbytSUrDRTKZjLu1c4Nlr17h6+SLT2QyVjfjS177N69+7SeeTKfbg4DAhnCcTbJZhjKaqK4zRKJW0v30/oLWmqiq+8IUvoLXmd37nd7h69eoTuGIkk7MMKOlYrU6IOE5OjqirFVJGqmrF9WefZ7y9Q7OqODlcUFVrrj19iWKU09U9WkmiiCitmJSa+/2S6CP1qubq1R1ibKmbNUpl6JAnratLZtPgA37wVHXHybzi4HjJrTv7nCxrtrZnaQrmHbPplBgiq1WdKCku8vDgOE3xfCB2A4g2ySgJFKOcrZ0LvPaxjzGZbtE0Nds7uyxXK3xkI416vHWOKAzQ9z2r1YLBDRQxS3IKkWRRZTnGh8DgkpkxmULFeWe265K/aXsyxsXkQVtXS+qmZpoZCCF1skTS2XdNQ9e1tE1DUzd0XU3fdQx9t6EHJcnjeDKmHBWMxmPmdUfvHHXTMriUIzC4nraFGALTckSe5VSNT58LgdWWtq1RKJTU5NZitU4Gvcdc//C5f2B//z7/+ud+njde/xZDp3n15Y/w8OA+XTcQQmQYHH3v0sbqBjrXM/gBJTNC9BuUOecEtSgiJt8gEKXGyYKudxwdLbn/cE6IYRP+5ukHQd8LTvpI7zyg0FLiIyyXFYP3GKNBZP7y0/0AACAASURBVByuOt6ft9x4+hK3T95jIXPm0aOMIhcCa+KmkJAolYoe7z1KqnNjMBuppXhCYQMPHz7grz//Of7vv/8bHh4eoIWi6zpEZtBSUq8rcmMxxmB0mvoM3uNJTT5jLDZ6Lm1NGbzn0dERh4s1W9szbFZwul4xHJ0w1BWFEpiYkt23xiMmoxHSedrOcbKqeThf8/37Dzhe11RNx06WsV4umU0mTMdjnC3QiyXee/KiYF1VQCIybbg4OBfwvqUfek7/8ct87Rtf50//9E955eWX+aVPf5qf+cQnmU2nibT2mKsLHr2BUYsQ0rtg4wVNGYeSth9Yrlas16lgX9UtTe8ZIun+2STW+00X2rlhk/wdOTg6pA8+NVR9QGVjtvY+xOHdmwijqfuGdrTLrTpjGlqGeUC7NVvxiLLewuQWuTxB0FDMpighqQbL/ZOalbf8wi//BvlkBoSNGkBR1R0PDo6wXGBSTslU3NQV4XwG/6TolpvagpQlHpHERDXa/H7cdKtDiESVZGapue3phoE33niTm997i9/81IfJRiXGV4yt5MaVGS50HJ8ueJRl2J2MKAIqk9jc4KLDaoXRWcraamHwgcoNLNYtJ/OKtunYHVv2LkwptaPuI0VZcuPVVzGjnEf373Ly8D7N8oR2MadzK9o24qRDaUue54zznNIAUlJ06YxZtw39EwgPvfHcR+mqU5rFkqF3nE/J4pkXyBNCOA/NPaNIpffhQAyRIivAGqJz+K7DDQPHp0vWVUe5bmiajq2uQwaPjopRsZWa1MLS9wHnIj506WymLXtX9tCZxQfHEHqarmG1PqZantCt5hwvFlx9/nmee/VFRAa9W+OGCo+kahqoVgRKqrZOsQbSE32HFkldobXG6n+hoVu6jr1LFzmpe4S1zBcNo1HJ3f1jtFbYAEp6ikxxeWISxq6L1MDaCRrSRKONm8nG5tZNf3HAKskgBUEEnIgEkUbQRkpM8OghUFjD7pU9di5fShg77wnOY4yETXAVRIJLj5qKgRgklcu4c3/ObDLhsm84NhoTE8ko4EA4QgxkyBQGwsbZH3giYVIA165dY//+Az732b/h2evXeeXlDyEFdOsV9+7d5c3vvs6DB/dZr1f0Gzd+ymPYyBRiMpc6AspYuiY9xCnZU1JOJnTLFaiefnHMyXJJnk+QWtMPnmFz0Pd0xBiYlBNmG0xoIoJEnPM0TYtSislkglKSnUu73F+tqX1Eak0mFUJE2mEgM/ZcupPCh+I5Zabve0ajEVo9/kb7Tz0TP66z9YNm+P+UbOoH/S7ee773ve/xu7/7u3z9m9/Cdz2FhCuXe7bKAhGTRr3IM8a55cJswu7uRS5c2GI2KdFZwZvv3uFvv/g11i75V/Yf7HPr1i2yIj83ya7Xa7z3WGvP/51nhBJjDKvVis9+9rO89NJL/PZv//YTmV6EMIAwrKuKBw9vMww1VbNEao2xmt1iB+87To8fsX/vIV21hhjIbYZCMgw9SJAqBSmVRUFuDKKDh/dOeOmFG9hC0vUty9UpzqfGQvSphy8CNHXDw8MFd/eP+d679zk8WZPlOUaZDeJQYrSlqlru3HmfcVluipGacjxiJCXe9/gYyPMMpTcUDQSLxQKKOTbLKUzJct3QeUn+BB5dtQFERGAYBhaLBc4N578vRArSG41G55SXcz/NxnOBEHRDT9M07F7YxlhDiCko8/j4lK2n95BGoZwAJcisJAwCL0FLMAqC1XR9lzZ9AZnRyFwzm0yYTMas245+VdP0jt55xEauU2iJ6zuEVEzHYwSS3kFVd0S/IftFydA7sjLDWI3RBvkE7rujw0fsbG9xfHJIllnGe5e5t3+frq2JEbKswNoCYk3Tt/TOEaLH5DkCnZD9PnkqYkg6eqENymqM9HgRIUCIklwoOjFQ1Q2rOtL0kX6IyRDuAZIHTwlQQuH9gFGb9Gqb0zrJe4sBRgNvnTS8tzqgFpLCGMZREOUH7wohEmpYbZopIYRzXn66J57MnvE7/+P/wNFqQStSE0wpiVCSyWQCPnB6fMLQdsnn4F3Km3CernecdC1CWTIEpbWoy5dRxnL/6IiD0zXTyYQ8z1muKvCO94/mlEVBOzj2LkzZKkfEEKmajrtHa97Zf8j+6YJ13TIpx/R1w8VxwZXdi9iiYBlAaZNoaZt7J25gAUrKhHPeaLhzmxOIVG3D7Xt32X/4gK9+7Ws8f+MGr/3kR/jYRz/CL3/q04917Q7ma6yxGKXQSqGlQoqESF03PfN1zfF8zbJukBHatk00IQT94Gm7ntA3+OBpulQQ9Ruj8hncwXlHDCTZsJAo8zSdMzw6nHOyeMRceJ7T+2TX1rx717FoI59/8yEr9yzt8hv8m597CS07Yr7DkpxbD9e8e++Aq9efolOWQYAiFdjVuuJkPmc+syhVcTHm7JQRa82GTgdP0m8RXToUIyRyI4VRGxPymawnhlT4BKk2pvjI6fyUL3zxC7z++uu89NyLjMYzLl65hr/3FiYOXBzD8FSJeB9Wpz1HukXsJFoZJiV7SykSqSwGKtdTtx2tixwcLlgtarYnI67tFkwzg9ro/Isipwwlg7I89dKHufTcSzjXU63XdIsV+48ecO/+Pdr1Guk9UgukjRidfB9WQCMEnXh8Q3dZXGWkC9bTRywXDUEMiE6c+yh/2NeW9gkh0vUMIdB1HfbiGKME0TucNvhhoGs6qmZgtT7m9HTJhZ0lbVXTVh3jcotRPqbIx7A5JzZtjclHPP/yhwBou6Qa6IaWtl1RreZ06xXLk1Meris+9As/jxpPQHiMCMgo6H1KeIneEz24PuXlhBAIQ1IuQIIOaPmjVSo/trjYnRQcHewz2r5M1fecHh2RjcZ0Q0KAxeggBvpmwFpNpnSKDbcGKQI2gBURHUIibZCiJtJr+ANDi/fJ5JLGSGlUblTS31mbpQsXA4NzuLZD6vz8SxMbBO3Gc0IIkr7P+PrNhxwetTy/Z/jY1PFuhJXXVNGmhzj0DDh6kTaxuBnHo86Ssh9//fzP/Byf+9znODg44I3vfI1LuzNufv8d7tx8h4ODA7xP2ueha5GmQChNCI4QUuJ4iOmXMZZ2CKw7l7pUEbw0ZOUEIxWLuic4h8gsbQz4tmXwEWUMo3LEaHopfbaNpMJ1HX6jtQ4horWlHI+x1jLbKvFCcPvRAQerCjPeSrhamQoKm1ncMGxQlooQ0sbinGMY0ucxT4B89M+ZVvzTwuPH/fnzKZeUfOlLX+L3f//3eeONN1Ampx0GPIEHJ8eUxVV0jBsGusBaw3Q6ZTabMR5PsPmY/cM5n/vy13Ey4+DogMJqvvKVr2AzS56nKQ4igQt+MJ1WbihqWuuNbE2dFyJPSvs+DANNc8R6ecxqPWdwA3leYvKcw4cP8H2TaEcBurrD9T2zWUlmLUPf4weHsZo8l2idpEC5VmR5wVAFTh7VXH9hByEVi+WKqm4pizFaWUSQVOuKw0dH3HpwwM17Dzlc1vReMrE50/GYIs/YvbiLc4Hbt+7Sd4GYR9brhiEKVo2jLAsyJan7gRgHhr4F4O69e+Rb73LdjLi0dxVjRxijCeEDR83jLKUVUgbYTGLm8zldd/YSTR0pYyzj8TiNmzf3vRCcIy0Rgq7vqZoaoQQmywjeIYXh+OiEF5+5msbjkg0Qw5/PTtOvQBgckohWgrEpUMawtb1DkWdUTc26qai6jqPFAh/TpmmV4MJ0xO3b72OsRQpB3XQ0ned0WSFIUVxKaCQCIzVaKfLcbho1j7cmo4KfePUVijwjzw0SeHT4EOcCi8USKZaMRmUy1/pAZgzGWoQQtO1AkeVUdZ3QhwPkUVGqjNLmYDwOh4gDgZC8DzFgbIYaBGKDPR+8T4GHJO/f2UBGxuTt2JQDIC3ffPc2b966zUlT0dssHdVCmqyHzWHAbw4GylqC97gQP0iY5syU+WSKi/ePD0DJc2y6yS2hIxWtQjAej1kvlvTBI2JAWkPvPL0LzIqSQmnsaoHVklGWgstya7n7/j7NYkVZlvgYcG3Ho+MFEDldTzhZLZnkKWdguWo4aDz3j085WldkeYaJgYtbU67tXkBrze7eHu+dzAmbhtgZ2vjsPec2BlbnHFprpNYbZhN0bYcn0i9OWb7+bb7x7W/x7/5Dxlc//8XHunZv37mPNZbMWDJjyKxFK0nTNiyrhmXdUnceH1MCdQjQO0/dtvTdQNf34HsGN1A1Ff3QUbV1IgX2HafLUxbLJVJqYhhAKZpO8+Zbp1y/foNy7yl2Lm1TdkfYyUMOj/+RoiipViu+9OX3GE0Vp8OYIiu5vR94472vErXg1Z94FScV/+7P/pzP/OavcGV3Gxctb77zHvPlina4yKpzuPmauoFxOWJcZBSZRYonZ4oX3hEJhCCIVqecCy1TQETc7Mki7aFDCDjnuHP7Pb74xc/z8MF9QnBcungBLzQvfPineG//DpEOKwN7szEMI+4f1ZyezlHZhKktiY0jhA6pFCJ4+q5n3XZUTc/xyYL1qmJna8TedsnWWGKVxDmJNiO2di8x1o7BRXABZXOwGXk2whZbPL97mRdf+yiurRmqNdX8mNXikL5pcW1PkBZ0ziRvHvva7Wzv0Xewvb2Fc8fIPtL1Lnk64LwBG88CVzY/iyE9L03bIlTyhQml0VIxtC0CBe1A6xtOl2sOTxfcurfP7pWn2b2ww3YxItMq5QNJycW9PZ658QJiM/FsXU3dVbRtQ9csqNdLlos1t+/sE7fGZJMpwuQE3yNEgZJghSG3hlGuCbFEqS1c8DjX0ciaGNPZQGuJUj+akvdjT4EXp2MiKnkQvMMoxfx0jvOBzkf6EFNyZIysmuRnGOkcqTQ6OrTzyCiJrkP4iBYBLdK4z2Gou8DgIjJodNCoEFBRYIxhOi4wSpBnFmk0ISYMlugH8BuyCBu03Ka1FwUMveXWUcP/+/fvMBpf49oo8lo551LrOY45x2LCSbSsZTJ2dwgcYUPF2qQ8/kdM6P+S9dZ3v8dLLzxP39U8eniX//Dv/y3VeoUS6XDJRq87nkyI0rKq6nNqkJQykROiT8WcKTicH+NiwAs4bhp0OUIrhbKerl7RtC1SGabTGePJlCwfIZSi73vauqFteoLvaeqaGDxGafJ8xHQ6Y2u2nYqM0nI69Lz57k1iMU3scOeINpIXxSZh0iE2CaNnD4lSijzPaZqGLHsyabVn659DFflRRcnZxhdCoO97bt++ze/93u/x1ltvobXG910ylIrAg5Mjrj19iSgiIqT/V2uDVBJrLdrmLPvI337pa+jRFvu33ibPDPfu3CGEQD4qmE6m9G5AG0PddQz9QNd1GGMIIZBlWTI/b5CgL730Er/1W7+F9/6JYGlXyxZjIcvStKSuOnavXaPtPXUTqBcrMmOQ2iCjYOh7cjtFhEiIDiUkNktEKKMVhcrYmkx4cLTG2BnvvPk+ly5vk89GzGaG1WrJwcEDvIv0baBe1ZyeLni0WLFqO1oP+WjElSt77FwokDbRWZaLFU3TMyrGtE2X5DK2oGl7mnZge3fMdMcy9F0aw0fPMATev3uLKCJDu2S2vccom2LOWLGPuX5QU382eWqbJj2XIg20rTVMJlPMpkAMIWDU2XMNUQgG79N4WabwKT8MWKE4PDw8xztqLRFa4BQoGRMwWEa0AmsUiJysKJDGMN2+gM0sy+WS+eI0hfytK1ZNaiZIKdialsiYzOLalPh+oBscnQus1k2S9MSIljpNeoVI0lY/UI5nj33tnr3+DEeHj3jmmWu8+OKLzLYmPDp4yKP3H2K0BaBpOrwPjPIxmTX0rsb1A2NbUNd9wpk7z0jlsGwZdYKJLuhlQIWe6MHHDicCBYEYBK5XuD7ifEw+PZIBP+nXxaZzGNCodI+EASEVnsAqeKJW5EGRC4kSEU9qLPgQUnGSXL9oqchyc+4hRAjC5iD9JFYTHSpqRGATZCZTc20YMEpTliWu6+nqJN+RvSWXEhchCMUrP/ERjt78JrkW5EYyy3MujZ7i6rjkrTt3OFgcY4uMbDbG1wPHyzXz9Yr7B5rCWto+0Paezjt6BPkoR0fH5dkWN65cojTJP3R6dEjd9EitGDZTPbXx+GmtzylMCJH09Jv3sjIm5ZsMQ0Ise48SktA+fkfvwfECIVK33WqDNQatNM5Fuq6jdz4hOxEEUnrzYnGaPHDDkCSIztP3PYPvaYeOru+p12uq1ZqqMrx3+xaz7QuMS5MYnRieevoy5dhxcHLIBa5wMH2B0egGH/5XloN797m2nfNgv+fb9xb8+V9/jrwsmVx5nl/+9V/iQy89hdIGLySvffhFpmUGGI4bz+e/+jpuWFPXVfocwuLQrH2DWVWMckNuNJnVTC889uVLnepNgG8YIlHKBMnZUEAFm2DRasmde+/z3e9+l4ODB/TtGj/0lKOc7dmYuht47tWP8vCbX6Nd3WNMZKwtl2ceESMP5wPzoyV3Gk89aSi0Sc0FN9BHn8J865bgI3sXZhSFZFomeloMCo+lvHA5/eoWjPOcum3QIoPosEqhypzeawbfk6kx5ajk4t4Vet8TvGfoepaLBYvTOaJ5/MlFwMFGEaO1wEaLtQVKiY3Ze0Mk86kpkBLioelapNQ0TYPUBptlSCKh7yCetcoCQVjqmHDeJ4eHfOPOEYVSfOjpS1woNLPZhBsvvcyVK3tYm9HUHU1o6WJF1zfUVc3QJ/Lh+wdHPFx3fOzDH6bMSgIqAZmcIHqF1BqtIM8E2k5TMGHweN9TVUuGoUXb1FAR4UdPu3/8KSZ6LszGHK07NMmNv64qIoF+8Aht6VzAmIw2eobesWoajEid2KZ31F5CDIy0wQjPZJJzVHuqQbPqIiOZYyXIaIi+RQrBzu5FtrbGqasX0iQkEOjbmkyZjcZ1k8YrM/QmvK93noNFz19/7vs07gKFcnzk5V12dMtMLZg7zbFoONET5khqYaiiofcbSkeMuB+IcX/cNZ+fYK1kNhvT9Q19H84lRT7Ec1NWjCnF9KyYsEZtfCEQvEQZQ7OROYWYwgDnXU8TBTvFCGsiU2tZty2ruuXk8ID1ek1ejBBS4bqAcwNd3yJlSj/Os5LZeEKejyhGJeNyijGGYei4c/8Bq7aj3M4wNj34QSe5iOuH9ALXOh2YfJpIaWPQJt1OSj+ZUJ8fXP+S7+Sf4g7Piosvf/nL/MEf/AFvv/02WZbRti0iBrRROCSrpmbR1Exzk3IufEryDBuyRNU73nnvXVQ+4d7+AZHI4uSQ+/fvIaWkbRq2tre5dOkSddPQVvUPESTSlMdxloswHlsWiyVf/vJX+MxnPvNErldCgAIhIVHbpqHvHFleUo6mNPNTurpDmpBoPVJt/CDxvPuvpUidwMyihWQyLnkQa8blRW6+9y3KC5af+cXXECJQFKkzv5iv6fqGbug3ZAxNVo6ZZpJZOcL3LffvH3L1mT3K0Yj39/fZ2rqAc5LF6RopJbPphKY9oes9TdtxYZJMu6NRSVZO0FnK2Hh09z32797h8tXnePGVj7KztY1S48e+ducoWiAEwXpd0bTNB1kXBJTWTGczjLUM3qVk5c3UQimJFOD8QFNXCBTaZnR1hdaGxXK9SWlNHV+0xmYZ0adEXikkSmtsUTB4j9QGk2UoY2m7Dud6yqLgZH3C6XKJ29DntAhsjUcslwuQSWteVRVSZHS9Q3cRawq0ciAlEEBKrLEE17Narh772v36b/waf/xv/5jj42O0lnzr29/k/fffp696jDbpvo9Q5gVKCoauJUZHYS1NN+Ccx/mIioJCGUZBs7j1gOnYUl69iCs6YggMoccg0pRXRnItaDX03uM3GnQpBFoKlNQMLqAHgZEqAfBJuSgBQEesEiiXZFheRLwIyTzNBlpxdvYVyYfknUMI+QHD3j+ZPWMIHrlpLmil0cYgN1N/KQVKqxTe2LZ4lxolVmu00tT9wLxp2Lm6xzA/ppQRo1Jmw/jKLrNpybsP73P70UOi6yiyDFvmaK0oRwV979C5YYRCro/RIVDkGdf3rvH01oRCgvCBzsNoNKGePyCqNNlksyf44GHYIEtJjUJjLTGyIfN4bJ6fS2yCD8TgCcPj695bl3CtSggG31N3A8SUAxF88hwxpGDK3nd0Q0vXdhsJnkeIhM9GpGmVcynA0jlHBLIsS76pVcXQgc01bS954aWLTKaKF9UlyvIaxdgwv3Wf//a//+/4sz/7LN//7juIzHLtyh4vfniL1z7xSa6/8DKTcSRXFUSDiBkXZ1t4ArXz3HqwYP/RKdtTTe+GRN+rGzw5Vkv05gwmRURKePbac499/RSb/B3OZMMO5xURaJuO4+Njbr53kzv37nI6X2wIQsnr6vxAmU+ZjLIEd1E5H/n5T/HG3/05noS+HlnBtLQMoaTuItIqqtAzDCk/JohIHzzGKPZ2LzIuSwQdQnZYzUaqE/BCcfnZ5yEbMSocZZbRt2tiX1PkFu97ECn3TG8CMYkCJxTBlEQdESawPd1h9pRH8PjN0BAcg6vph3pTSHzQ4FTyDCiQpGZW6410ViIJjEqLtSb5WTfRCi4GlHdEP2CCRAVFVJI2ClppWDnBctWyfXTKhWcuM51MKMsRbduwWi5AF8jcYIQiRIWRhsW657tvvctJPeDUhOdvvEyuc+repTiDaNI+oizlqCAvJcoW+E2+hYiBrk+fEVxqQrL9I6/Jjy0uDqqKy9uS7axncXxMoQS9d0QTmAgLMaMNcLxe4WQkRIFAUwcYhi6Nf7TiMpEsK3lxKzDbMvzDieTto8AQLzAWc/IwRyiTLrYUbO/ukI9HKAm+H1KAVLNG1muKqBA7V1P4iNC0agsTW5QYqCn56zf2uXk0xs52+OmPW555Aei2UbFmGtbY9QHbXWTVRmqX0fqcuJmVR++QPtBrgCfwsKqBo6P9dKGlxLmANQUyJElC1/cb/aSi6zvGWTJh965Fqkg/DBTZDk0/UK/WKUBeRqRWLHvJQSuZTiyj6IARI2WxozHt4Fk1LYeLJS5GMqkwWpOPS8qypCgK8sxQFhl5OWE0GqcCwnuaOOK7t/bZvriLsAqlARRay5Sm3HcUeQ4qddSKfHQu5xmGgUBiIT/uetwC7wd9GH5jOG/blr/8y7/kD//wD3n//fcZjUbn/24pFSkRLgckVeUobU4XI0OIdH1P7wPrLrB/94A37z5ie3uXg8Njmq7m7Ztvo6ymzEcbs6UmOI9C/NA0Jc/PvBgJkyelxNqE5fyLv/hL9vau8OlP/+vH+uwA68V9Tg4fsZ4fUi8OKHLByfEDRqMZRgQmo4JqnehEeZaxtTVBK0Xf9iip0EIlSZ7K8FKhx5ry4pSOh9w+vIezY779vftcvXGNZ5+ZQVApbK8YGAafNr5O4deG0+WCZu0pxoF40TKajXjuued4dHCAQFCOJ9x89x5d4xjPLOWsoOsaghPM1wPjkQMpuLQ7ZTQdIdYLVqsjytEOTV9zeO8tmtND7n//LW785EfZfelDj3XtpBQIlTwMIlrWq4amrQhRJXygEAilKUZTVJ4x1A4XDTYoBC1GeIwQhNjRLucIr8nyCXU8Tt3yEInaEMOAEAqUQegMbSJlqVGmQzlH5xxyo2c/C7MieDKd8eD0Efv39/FEqs1zVxrP9tjw3sGCOgq0b2h7g7Ux0crqSLalGE2gHTwOhRPgImyPtzlezh/7vnvmlVf4yE99nG9++StcvbTH8cERbdNjpcEPDisVgogKEa8CIpOYaGj6nuXgaaIgDIJCKMZILpJxoYosv3Gf/rRndm0boyRSK0yEMAiccWSZw3qPiiIZ1XuDEWClRBpDHR1GSUYxEJRMcRWbSZT1yb4aRCTi0CF1ab2Im6m23/jIUtLvJnAaKQJCpu9FPiHpu5XJkhzFJnFepM6n2siKhJLYIkf1HYNzDL1DhcCoyGmHju8ePeInRoppbsm9I1MCl0kMUGYjLm49z/NP7/Hg4JjTkyWroaPtU9o3m5yR3FiujEfs7mxxcWvGJNOURhGHjn4AzJg7i46lg5AJtLC4KJDGpALDDVijCUIidML4hhgJURKcIMstMRM0TUMQKTxOuMefXFTrVcqYETIFYQqZPtOmkQNpX+j75OPq+p6uaxjcgPcJMOAHj3f+A7Rp79BKk5UFwo159toNFJrlyQGrpkbmHqEGBpFhjaUc90xKy3IqeefhKYO6xCd+4ef58te/RCgrbvzcR7i7WvN//m//Bx96/gq/8amXmRY50nuiiDghOB167j6ak5sxrqtY1jWZzRnLEaLrCE7hpMAPyd+mnoDHEUBvAA8oCEowKMm6rbl1533evfkuR8cHSTIbHIUKyBgJLoD3WBEZWUmeg9Vw2jZcf+UVrhy8xsn3vgahIwqL1gWjLJKJLkmNJ2Mm4xKtJHYTyDaEFu9Ts7jrIz5ohDCoILDO005n7Lz2UZo+oFUKgtS9ZnCO1ke0yvGuQ5LiFCKghNwAHtLZojAmTRGkhuLxi4sYkqfLe08MZmOy7xFYICBFKp5EjEQZUwJ8dEgjkvy4yCiKPPlBlECJmCZjIia0r/PgHVqm56xrAzFKBgyTC5eY7F4l39rFFDk6V0irEEZi7QTdCLplz7vvHvD5L36HD3/8I2hh2LnyDNGOMAzQ9widmovWFhhrk/QpM+m+dMkwPriWEHoQnhAG9PCjpz4/trh4/sYN2uUp2bjk8vaAixVPzwoernuy8YxVA9VyjVaGxkPvIzIKjJLkNkcKx0w7rlnBdGvCy5cKVJ4xs5ZARbbQPFeUPDfpee2FZ5GupvcVs0tPMd2e0ncNfd1AVdEuT6nWFePZFbTJUXYM1pJlLUoKKi7zzXdrXr+dUWyXvPJixqd/6qNYMeBMhRjS1qD7HnW0QB9XTBzsFqNEh1IKIySZNsQfE2n+z1nDkPjEWWYZBkeeFxAlSidpjM2zdKAbBgY/EEUa5ytt8NFjc52oT21P27YopbFR0YUB76BuL7n3bQAAIABJREFUI26aYYoSFQXSJY1oUWSU0xlRqmReDB+kaY5GI4yxaK2ZjqdkmSUzmq5rGULgcDFn//SUS89dZxCATxm/PgaGYcBaS5bnKKXIrCX44fwgr5TCGMN88WTSav+l65/KooZh4M033+RP/uRP+Iu/+AuOj4+x1lIUBcvlciND2yTIk4z01XqNn44gRtp+oBsMrQsczVfsHy957rkX+dznvkCIkps336PvekZlRth0us61x86d+yy01ueSMWMso1GZSDBCYK3l5OSEP/qjP3oixUW1rpifnjI/PkpTR+/pQ08M1Wa87VEykauMMUwnE9p2jdUCh8Nqs0kTT9+tVhpjBOPxhP27p5TbE6q64s03vs+FrVfJ84TUiyFRw7Isgqjp2oH1usHIYkPOEDz99FOsViu6tuXy3hXmy4b1ek3X9uxc3sOUGR/60Cvc+v5tRKxY12uUkty9e4erT1/B5hYlak6O7xJ88iid7t/j5uvf5Ntf/Fs+/hv/zWNdO6X0ZnrBuZGzqitC8MSY5IxKScqypByXnCzmm45nCrH8QX3tar3Ce0+WZUTixl+TXrt+U5RrYxB5TEZJkfT2YUgBeMaYH5q8gaCqKg6OjulcYBhS1zfPM2bTEuehbnpQGZKkfZfeo4yh63qqpuHK3mXaumLdtSB8CjWzhkuX9x7rugEErfnUr/0XPLh/n5vvvcf1p59hfjSnWjfUdfL5INOBqGnahIQOju3tHUzsqF2DUIFSaWYIJl6QoSEqmpsnPDqaM3luh9l0xMJXDDpiEORBMhoUrs+QKHopUTKQWYkykoAg70EEjdhARM5QkXojhw0iacoRImmMN4BzKUSSsiJTUCwCKdS50f4s7+JJLGttmmzHDyRFZ0Q+pTVSpO5mURTEPqW2d22XiDMxEoXk+0dzXr4w48JIkrmWUvpE2cKQx0BpNXuTMf565LTpWdftefp4kWVkWZZkyVKQa8nIKIR3yKjwEjolefDolEEIjNNoq9NURSm00XRtkwzd+iy3J12vM/x327ZJXrpJdoYnY4gfhiR4QkSkDJzlR3nXf4BO3+yFISZS2xmMIR0KSXkzLl3XM/Kd1hrlIwyRyaRka7LNuFAcLeasmgpCj3OOKiwxK0VmHCfHD/jS599mlO9wd/9N6nXNW+9+ni+94mmGp3jt468yGyr+1//9c/z6f/WrXLssyUXNxBeYmHPl0kUu7mzjh/Qe6foBJTv6wPm1O5Nv+ifkEQ1aEzdd9uVyyXu3bnLr9i3W6/Vmr0jesNwoRHCETUAmSmJNRmYtmVbk1tC7gXnrefmTv8g35qdUj25iQsuEDqEcjVVIBVJ6pPDoxOdJz1SU9DHSDw7hA0ZI7MYYu85mXHntF5lcfJaHJ2sy8/+1d2ZBkmXlff+d7S55M7P2qt6mp2dfYQCxDDDAsEhIFkhosWTLEX6wFOEIy3bYr37ym5/9JsuBw4FMYEKIkIWEkAQMi4ARDMyuYaabmZ6l9+7aMvPmXc7ih3MzqwfBWHZX+EX5j+iY6u6a6syb955zvu/7L4bEaLSUtCGaTvvOCMGomGkRQqS3ZmmKA6x18bCPj1PbNwiC+/vD0rQV1jbz+wkODB9eR9cmivGDjZRLrRSpSTB6ttZHtf5skoGPdEKTJhRBU9IgqynBKbJ+j5WtTZY3NxlubDBYWiLLC9AJQRInOEqzvTfiq1/7JuPpFJ0k5MUSaZZTVjVSCKyPrB2tNMEoVJqQpiZORaXA6UBlHW0LYLriwqLTn15CvGFxcf/997Jz9TLj/V2cUEytxySG1VHFhcv7eKfYzBz5tKEwSbTidB6DpZ9JBv2UlQyOm5Z8KWMl04xlj8tXpoQ6Y1kp7thK+bVffJB3PPwgbtrw7a9/jWTrOMPNdUa7O6iiQqe7hP2SqztXEHmB7g8R6QCfanTqqMh49OyUv/zeDjXHOXXM8bMfOMFaKpA+weod8D5OQNoGmQo2jvbZ29vlanWRtF+QFgVBxxTW1BxO1oBSUVRWNw1aGwjRVta20dpOSon1HusdaRYPH87GkBIfJP3BgGkFCEXTOhIVHwRhNNI6dkYVO0WPrePrJN6T+MjPntY1QQhMYkjzHCXi2DzLM/I87wqMjMRk+LbCthVaKqwMfP+55yDPI9UiEouj20G39g8Gg/n7q+sKo9WcXzsTddtDeFh/PF377/v9s9cyE0ifPXuWT3/603zuc5/j6tWrc03DyspK3MS7gx+A84E8S6m9pW5icrGQKlort4FJE6hHU7LBEi+9eBaQbO/sMi0r0ixj0B8wGAwJIWCMmS/+s9dS1/EQkGUZSRIPCKrTxMzE3aPRjVNTAJqOlgQxA0Z2Xbz4+84ZLRwIzaSSiHZ2ncP8Nc8Kgig+i9oC6wJp0sdjKSct1bTpKHIeKRXVtOwWcEVTe5raIbTDZ4FeL+sO5NcYDAYYY3jl5efx3jMYLtEfLuGkRVSeh977IKd/+Dij0R7KSxKnuXDuHCsrywgcod2jKSvwIJxgvRjQK2783lNKdk5osbqYTCaUk05kHHynl5D0ej36/QFXnIt0nyx6jmtjkLIBFygnMaguSdP5wWZzY/OgACF2o5XRBJPgApHKQohTjo6nG1+XwrqWqzvbVNaDydi9dJmsE7EOB0tc29mhdQKpJVp6gpAEJFIbdIBp3dBUNTcd22J/vM/eZIySjqzIMfLGtT5l09BbWuLX/9lv8Qf/9ZNcuXQF21ikMgjdMmpqGhcnUcFFqsPm5ga33nk3L5w+w2g8JjOW244dYX3fkjWBTKYorxhazf61kt3yAv1b1hmu5DjlEMISvMcZCdogpCBogcJG5y3hEQZsqkidjgcl52mmDrwBJfB4bAgxpE5KWiGAKN6WOkErjbdRiyRF7IQmSpEbg3c2UnAOAbNnzdkDPdv1JhnR5tmR5zltWVHXFbt7eyS9jLxfEIRgnPS45AQP3HYX8tIrFK6MzjMhkEpN3wec0VjnWEoT7LDAtlFTmWhNCKAzRaYUmVTdxFyjvCZIeOHqiF3f4FVOajsjhRBpQ/t70fBAa4XQCoiv34fQPT/gXNSZGWPmzZcZpfZG4MOsISDwDhCCpo5hZN7HJor1sYhSOh48Z8+WlJ3trIt/Fpt5sTjqzMvpFT2cswyGBXniMWlCtj9iNNqN5jYiUFa7jMc1ly+e5nuPfYdjx4+zsydx9QYnb1rlr77yKKV9Oybb5T/881/ijttv5itf+ypve/M9vOnuW1ECdE+wstIjTRTjukUbjQuRyWA6E9PW2vn+og5J0L1bjrl67SoXzr/GlauXmZRjJIFUCoyO+2Pb2qjB9G1nRR8bVWkarfG17NzZlGK/saTFgPs++DGe/eofY6/8iCJMcdbSBIM2AoKlbUq0TJAiie/FB1zdxMwLHxs5GnAmJTt1P8ff9iFGtYLunDEY9Ll85RxpoqnqFqlAJ7qj5sGBo2Wk4iVa4joziWhbfAjnFSxtW+FcC4TOpOj1gXpAZwIhkEQqvFYKJSS9PO+mbV1HKxwEPIZAFwoICIVHoIxCyYTVzTWGa6vkS0ukgyFpf4g2GQFJ6xsIHmU033viKV4+f4H1oytUdc3m0QFlXYGNjRPbxM+zZxJEYtBZQpak5EpjiI0wJR1eRzptwEeDkjdwVn3DJ/rFV19ESUW2vMJWscz6LXfGw7DzPPXMD7l0eYRtKtrpmFHtsF6R6oQiS+j3YqdTCcVqGOGzHkYqrjU5VSXoNZqTm0t87BNv4T0fvQVWlshCyvuPHKVta/TykCQr8PsjEq2wz7+Ms4LexhahP0DmA3wvZxIs339pxOe/c5baDTmxFviFD97HkbUWYcfYWjKq9wm7ExSG4bFjqLbk5eef5tqlc2z0tyhESiIzjMxQQhMOSZ2nVRItEUPX6ZJR2Ca71OZAYFpXsXoOsfMkVAwFTLOUIAxJZhhf3ekOgwItNEF4pIadcYnsnaQWguWVJaLSIXIl67qiqqdoEciyWFDkeU6WZd3CnnWFTAt4Wqk4c+kSz519jZVjx/DIWMgoQdulFRtj5paDTdMgBPMuve8s1XSnxfj/jesFuM45zp8/z+c+9zk++9nPcvbs2XkHSkoZubNCsL+/D8ROkLUWT9fBIsx/jtIpNoAwKbWX7O5XHDm+znS6Q9Eb8MLpF3EukDBL6ARjDEmSzDt0RVFgraWqKrJu6uNcFHVvbm5S1zVlWc5f22HAOz9f1OaUmpnsNETRayDMqQPdX3TbKPP/J35PpA1GKpdHiNDZNosoEBazhVAgRKR8zbjOzklisF1HV5CKmX1immU0TUPTNJ0QvkfeL5jUI65eu8j9d93FcJAznuxCt5jlaYYRELwnE4JpVaNVghKBXipY2Rhwo1BSxYRmKcBBXddMJpN5N4rummZZRlEUsTPm3PzPY3ESeehRDF7Ni02tNffedx9Sii54KtKs6A5Y3jtc1Xa2sAdUDuccdV2zs7PDzv4eFsm13T2s8xhtUMSNaDJtsF5igkASHXHsTFOjBaFtubK9w7HNVe645SRlNebSlR3aep+19RufXIz3x+Qb6/RXV1na3ODJxx/HSEOxNCDt99kb7ZN6TzktcdaSpglIxdmXX2a8t412FXds9XnXW2/luFWM/+YM0gUSL8jRyFAQyil7L1ylOL7C8rEBlayQ7RifQEgF3mka6xHOoyUkUqGVwSeR4pilkuAElRBUEzBeIlC0wcUw1RBwQpKi0HjGdTMvDGMAauzSGyVItUJqOT/oHBaEFK8r7OHA5jVN03kDwxjDtCyp6xppNEmW4ZXiWuNoBqvcc/PN7P7oObSdktmGqM6MHGoXPLUPtM4jOvGollHTIVJJLjTGAyFgRSAowb4XvPbCqzhh8NFLj9BNtdWMOuZjblLcKkJXqDM/rM8aLbO1cJZqf6Oo2up1jnxCCBrX0LYNwcdMqKZpKIoC2ZlqODezdo9C7ul4StM0r1s7Q4jrXZZlBKINfm5yumURFeI+7kJDwHLu3Bke/faX2b444Xd+57fQxTpf/MIZ3v3QMb7xzR+we7Hk5PF70Vpx+wnF0U88zB9/4UnOvLDP+z78AHnfoQSM9raR0uNDdEDTOmZQSEFs4HX3nBKH0wz90l/+KXVVEYKLbkGpjiYZtgXfEmxLrgXO207XJGiqspvlKZSCLEkQ3qJVtPXfmU7ZWFrjLT/3CZ7/1peozr2AFBOyqsV6i2sDLYHMqJhQEmIBM2+oSIVUCis0ZuNm7nz452nNgPLabhQUI0i0IjgLofua+NzUdY3uGojBB0LTxCJWQPAWhIp5YYdw94XQUtUTfLDMskBmk4ufZDIjRXyvSkjwgV7WTfZjouTcACF0tOzYcI5uq9Z5CA4lAkvDQWSiJGl0y9IpqITg4zRVq7j3ThqLSjP6wyUaZzl67AijSUnjY2OmrRvSJEUlKT0Zpz5aqS48QiCkIFcKQZcr5x2+cxz8aXjjhO6lnLXNYxTLG6AygkpQxQA96PO2X5WceeoZXnz8cfz+DraqsRYEMzGvxTmLc4p+LZmanKAMuxNJyFa565Zb+UcffCtvfmgd3SsJDBBZRj4YkBGdZHq9PqLYYeor9vZLjp04xcrJmxArK3gyGq/5xg9e5tGLCdfUGseWaj7+vnVOLnlGO7s00wkSTZr2yDaOkioN0wmvPvccrz3xDJtrK/gkYBMPyuO0R8tAKg7rcBz5nXHUrWOXum3mXZoZJSZ0XN544BPkvT7TusakhrqyjEYThFSEECteEWIS+d5khCl6yNQgEkGR9NAqBg827ZR6WlI3NUhFYgxpmpKlaXQvCA5va5T0ND6wbx3feuZ5pjZwJMnRStNS45WgCZZcJK/rNAGRz9opHWcbhxACcUi2jDP8fVK5Zwew7e1tvvSlL/HJT36S06dPz+las8NZCIH19fVIJ6jrue4ihEDTxvF2nuUsLy+xtrbGseM3k2cJhMD23ginUi5f26PoFezuXmZ/fzTvLjjnoutD122cLw4dnez6SUaaRuecfr9PURQMBgO2t7fZ2dk5tGsWfoKn8nyhm02mxEE3JdI9YudIdnkNs1A6733kJnfhj7NDhDYJUb/f/bA4i+0O3KHb/7p8GyFiUrBg/rlYFw8bEE0aEALrbJe06xEh2iMKoSF4tJRIYtaBshJhNUJoggq0IibO3yi0ic+qFBKwtG3TZV3Y+fM6c0fr96NeyTrbmQeJ+bUTIup8ptV0rmu66aabOHXqFMFOoLM6lbpzw2vsgTDWtZGEIw5czpxzjCdjGttSNi37ZUWW92NmjbPYpqVpQ7TadFGfFUKkZ+o8x7UWpQ3KGF585Twryz1OHd9ia32Fl89dZrR3+Yav3dpwmfHeiCRLEGnCOx96iK31Db7453/F7s4Orm0ZDoaYrKCRU5CCcjzm6nhEQsuxlYKPPHA397/5FLcdOcYLrWPnsfNkXhIUGK8Z+AJhE/bO7iPalrVTq2SDzhZRWJxwTCqLnTZINHnSI0lyNCWtL+n1JMEFKhT7jSe1Ao3CCkmNpyVOjwshyY1EC8nYt7TCU3cNF+8ttg6EtmFlMKCXH46JxXySKGW0V58dcOkOsp2FdQiB4XBI0zRMqimTSUmSZexsb9Mveoi84Kvff5p3/+6/4ujJ27l4+mkor2J8gLqlbRu8DHjVLQXOdQc1jdEaKzyJDcjG4XygllCnGTs+Zad8EhkyCBKZpWQm0NoGgZzrg6y1uK4hJaWEQNRiNU03JYhaojzPo6HGIdggl9NR5KfPinuINrJ1jdKatml4+umnAbj37ntYX1tDSkVd1YzHI8pygrMHdNb5NJxILVleXmJleQnvLWlPo2U0sQg+IKSmaqe0tuSJxx/j2pULbKzcxcbaEs+9co6J9TzyrcfxIwXlayj7dpogQKRsj0pUDnmR8Af//dP8k9/8OOOx58KFcxw/vkLrLEoFGmtRWtF29r4z+J+yP/7foqlGZKlBS40igKtwjSM1GmtbjKJrJNluvYv7hdF6Tk0yxnT2uAGZCFzTsleWrC1vcf9Hfp1XnnqUS898lzRcwriYMO5aTzmuCDZqoKq2iYY3UqF0dGZLV7a4+0O/gljdYnR1hLYOn2gIAaMVSkpa19K0DUnSm0+qvHPxbEIsaGc6JtNZSQcfzTluFC60eN8Sgnsde+J67ee80Rei81zwcapgtKZfFPOfFTjYp+O5IoY2ekQnrvYIH8i0op/HiXOiE7QyBKHj93W3xOxenjSWJC9Y29wky3OOHDmC9Y7d0YimqhmPRiwPl1haXkLYSIUXsUcYzUdktAGOLldhTjUj/PRm6BteVSUlSWJAScygD0mGzAvUYBmpcu57/zGO33YvL3z32zQXL+LKmrppuy5ATdM29BogX0YLSR1SxGCdX/jER/BhwNIKqKzB+xRt4+sUOif46GUulaI3WKHV5ylDw3333kMVctwkkOA4c7HkK98b8+K4h2HCW39mlWNrgeneVXSRsrpVRKtHkWLrErd7mb0XnuP5b3yZjSIjcwFDILEWZRu06OLTk8MZXVjvUcbEsD+lKOsoYmptAwSkFpGOZONIylpPmvdoW4dUCdNpxajrpEidIKTAdYcyvKeqWi5e2ebum+5DSYdJU1KdkErNsNfHFZHeY22D0glGxoUjHiJBKQhOg9C8fOEcf/vqeUKi0ZnC2maeOqu7wByjDZPJhDRNY0aCtTGtu3WdvWoBQjBt9m742s0PnD828v1JHEaA6XTKN77xDT7zmc/wxBNPRJeczuq1bVuaJuYUrK2tsbKywmuvvUae5/T7/SjwcxajBU1dsnXsFEtLA156+RVGtePE8RM0dUPrPMury1jn2Rvv8+LLL9K6hjxPMSaZFxLOxU0076x7q6pCykijadu201jEh1Ibw3Q6RWnN0vLyfFO8UUQueOyKCBWLARnUfGGLF/M6ZyQRD6NCxsUshBA//44DGsN0HLb1+ACCQPAtRueRhiK64lhEX4yAiAfmzsd7lvwqpYgiNQJSKlzr55ujENHtJbQBBSA9DokM4rppSpyOuBCiZXQgBk/iUFJHgeENIpGgZUB1r9M5x2Q8wtm669TGAsakKb2iiAVAa5HBoYRHS49WHhEU3kqauiUxKUc2tnj3O9+CFIGgNF6ZSOkKHolEaYV3CuEcmpiY7buET+cdTdswnXae/GVJbqIge9rGNPUmWKxswQtaK/G9nHo6RSvNUpbH+7Oq0VlO0Iq/PfMy++WYe+65g5OnEq5dvHbD167oDxBGMS5LPvqLv8igV3D6uecp/9cXqNoG4UOk8WjNYLjMlWvb2HZCph0bheIj77qXB99yF6unjiCWh9zzsYd5+uJfoF/Zi976RpBYyXKjSHSPyxdKdu0Vjt5zHLmcEMw+VpXUSlP6SJ0wRjHo54DFeU+eRUqM7iYBWE8aJJkX5EAtLG2IDa5USpIkpwyGOngq76hFwApPQ4toG7LplN4hiEIhbuZI0YVrdfats4Kj02DYrhBQeULa7zFtKqqypO4XpHnO3rUdzLphu/F8/suP8Lu//S84euedTF47zfa5V6l3r9Frp6jQOcoRtQhSxEmkcxYXGvCSNhGItGD56HHW7ryHRz71h4y9wgdPlhqSPDqkBe/wAoJUBCS2dSQmrosQD8CxSRATvK2L97PuaGzzF3Ij1w6HdxZrw3ytcM4TJDS2AQXHbjrOs888w19+6c950333c+TIVrQDVRIhFELGqYvv1hdjYsKxUhmDYpWV5WWcqwiiwEtFnmncIMPLBDHNaLenPH/6Be695xRHN2/iP//e70O6zGDlTnrLfUZNi0w8/+X3/5BESTbXcva2z/Pw+97OYLDKe99xMyl9zly4yPLaCtLEho2S8YBf1RbdFRgHDaDD2TNSLQi2BRUtkI2Kn4t3DVli0Do2Rx2QmozWWoQUaCVIjCLPMvIiOkxOplOkUCitcLZlb1Sy1B9yy898kPWNLc489gjl5QtobxG2QeGZjseEIPCJoKc0iVJM0IS1o9zz0V8lO3ob25OSuprQS1Mscf9aHhQkEpTUhGAJwhNaR9JLaUOc4kNkLhA8TVNH/YWPlrAzZ8AbgbcT2mY6z0zzwaJ+zOVhFjEQ6ArCEEiMRnhLL0uIbTmAuEeLAMFHy2TrLY7Q5U1ES99eolkZ5Eij0SYjIVI2437uIsNASKaV5bVzF1Ay0M97BC9JiiJOaJ2jsg21bWlti21a2qamriu8bbs1Qcb8C6VIkwwpNVJGShzu/9GKdrKzx7S/jDA5Ip1iTEKCR7QVQaQInbF26lZu9i2nv/IIsgXtA7ZxJAi0UATlmOgeaZpw4ui9vHa5wA6WuPjKiOJUn0y3IHKQHd3CS6QXBBsdLJrRmGpScfc73kF25Cj0VkmWjlNWmq899jdcGeWspil3bTg+9M47WT9SYDKDsDWhLrE7e7i6wrdT5PlzvPDIFxH1CDfcwidJN2Zy0LYgZeyYdvaqNwo7yzNQKh6GgKZt0Qbqupl31GP3OHZC0yynbmwMzqvraIFJR2qNX+FDrIpb53j2+TM8cOet9FcKvJTkeY9MmGi5KCStbWmrLkFZarQ0eOE6apUi6Iyqafjqd77LqLUUAwPSd8FeAuGjR7xKTXRZyPM5vchLifNgkjR2bYnBLZNxeSjXD3761GL2503T8MMf/pBPfepTfPOb35xPDGaivNlhH6DX63H77bfjXBTtFUXBysoKe3t7VNMSrSRpnnHi2BFuPnmSK5cu8MLZV/BC0cv7DIdL9Ho9Xjt3jqatuHj5AlluGC4N5p/leDyOKeUdPUxrPadFzboZSRKnQM57ptMpdV2T5zlJkjBcuvGsAYizguBnQ8vIM5ZoZCBSm7rphUBER2QROBhIhfmmLKSc6zO8DdgmAJ1wOUS3jvn0LUT6XAi+G4wIrLfRTYcQDcZU/PckAiFU7PiE+PeCmB4dWtBKEgi0/oCjKoSIFquiY30GNy9UCAEj5KHofYyERMsucC3grWU83sfOnTEivTFJMnr9FYJIsV5hgwKVdL8sAYGzhumo5OjaJh944B7Wc8ekKmPRpjShdcxI6yHELpEQcTrjhItuRCHyL1rbFclBkChJnij2axsLwiCobINKBKK1hKCpg8DJmD1QVhUbq6vs7+wQvKW1jtoYzl64xqXtPdbXVyjMIVgyKkjzPNJzlpex1rJ10wluvfMOnnriSUJnF2q95+q1bYKzpMpxcrPPL33oHbzzTbdzZG0J2ctplaZ3Yos73/8zvPhHX4epp6ZhaDK0EyAVa7LH7pWSV+0rbN57grXeUpfVUpORU08rhGhJjCdPBdYlpErhRaA1FpN7mrLF1Q19lSEcZEhq6WlFvNd6QmKVofGeEs+ecOyFmqkOWGeZVBWJOZzJxSwMNhAnoTP6BDBPUJ/9NwC9QUE5nkQ3nKYm6+UMBsuUkyn9Xo9HH3uMoydO8Bu/8glW73sXq7e/mWrnMuPL5yivXcGP9xEuWq66zprXOUdINCrpsbZ2jNVb7sSsbvD0j87yN8+ewemEfh51Y1tHt6gmFZfblt3JGKniJDFNNFnem2vKIOowIFI8AoFyOmUw0N2k7nBoZbOiApivyR7fUZED/WGf+x94E2efP80TTzzO/W9+E2ubG9Q2duNxLdCpi7smSRCSIDVa92KzVcQU8yTLSDJN4T3ToPDCcO7FMdL0QQme/dFj7IsB//q3f5d3vettPH/2At/969NsXDzJmeef4T/+p9/jN3/tY/z7f/lRhomO3kL9lHakaJ1hdWMd7/YQIo6XnG1x3mP8gclDnDofTnERrYEdzgukkrQiUrB6WTJv1GmlCNrQNB6t4pQiMZEOZ4wi6yUIFFnSw7kWoQQqeNppyVQmmH7B2m1vYnB0i9eefIxzzz+LaEaxudu0yCDxSaSa1QH0xhHu/eivkh27g8YLqvGUJDF4SZfXI1lfW6Gf5Vzb3UZpTeMsWhnqaaQlewRtt/fazoo4mWtPtT9TAAALhElEQVR8Yk7OjcK7Ka6toSsuQvDzhtisUUr3e8TBtEkrRZ4nZInpWCmi2w463YX3+GBjcRHcgSU+giKPQXfSGJRJMYKuIeYQ2M7CTjKdtoxGYxIV6Oc5vaVlRFdchRApkkFcbxQgur3XzQOHlRQ0SlHZSFVT0iOFRbtA/6e4v79hcdGOJ+xfuQIyoadSkqQHrQXlQDQEaQhSsHXqJsS738nLTz6N3d6GMWghkUlA9BOOnDzO7bfdzfZuQr1zjf1aMBwWFHlGoqrYvUii33uMhYwPtrceZx356jpLy5uYwRBX9KlUxue/9gOeuhIQyrOV7PCht55ic0WhMk/b7KPGE8LONmoywRBo3Igz3/8u+xcv0ttYI0mGCJ3hQwzYccRU1lQqlD4c+4VerzfvsFdVFUV4bYO1HqXMnGuulEJJgdQKpIhBKkpT1TU7e7u01uHbKdYLfIi0CWUURksu7u3w1e98m49/6CGKLKe2Lh74un+3aesYJ994jDQE79BGYnHY4Ki85BuP/4CXr15h6i3HVzej1qDbwGZUkNm4e/ZeZjQfpaI4qmks165uU9ctS8s3fkD+P1nRWms5e/Ysn//85/nCF75AWZakaUyYLctyHmw2+zlJknDixAmWl5d59dVXY9p4kjAej+djzJWVFXppEkXpXbidbS3b29us3LpGnue89NJLGGM4f/78PH22LEuyLGMwGJBlWRQoak2/358/nLMiQ0oZCzQTJz7TLpyt1+vNAxQPA/66kMPXXVdil/J62tZsWnL9lMi5A5cr5sI0j3Uzf/+oydBKRUpDODgcxMW0419fFzAmpULOKHPiYGTrve/0GAc0IGPMXLzKbIrCQcDdjNk1F8352WHixp/dGR0sjtDjlGR3d4+6bjrNiewoIBmr6yd5x3s+imkajHBYV5ObZfqiQuQt/bzPXbfdyQff8x5CeYVmdGn+/tWsi+X9/DOZfW5/RwQoBKPRiACsrq4ytdfIQsvY1ggp8UEyKacsLQ1xbcu0CXjbzhPmR/v7pEpy5OhRdnavMm3G7O9P6Bd98iTnyqURz++8fMPX7noDg9nrPn7TCf7Nv/u3fP2RR/j217/J5fMXaesaaScUPcn9d93Gh9/7Fu67dYvVYUrIUxQC3QaUDhx75728+P1n0C9to5uash7TTwsgkAXFEj12tydceOoVNm7ZYjXpM1UNeS/BJTJmlfo6ZmEQj4x0WgIlIesr8C3KKlLRUSyCpBESS+Q82yBog8QIgfWeRmkaPFYKJs4jJ5Mbvnaz63f9r9k9MKNDzeg6otPpJGnsFPfynMbG9SQbZNRNzXRa0sty/uzPv8jK6gof+tCH6RUrpMUK2dHbYt7HdBtXjqI7UtPEJHBt0IN18mKI0imtUkyc40++/FX2xyMGwyFCwNbWJg+//wM8/fQzXNnexluLFpK8l8fPT2uapplToGb5SLKjkLZtO5/kHiYOdGZxenp93pHp6MHHT53kyInjOO+ZtDVCxWTkUNkuOK6jqMmoGxVKRZexEFheGXL18jZCBJQClSnSVjCtBNPWsXX8Hs69+jStUDzwvvdy6q47aZxj58qEW2++iwtih5fOvEiaL/Hk357lc3/6F3zkoffQW9nkT770Zzz8ro+TZlm3LnQ5G0k3xcS/jpo8EyofCpzDqBiaqqWI02UR5sGvszC4mE7fud0Rr4H3dp555b0nyzKaRuBDg9Ia2zZMygnKpIgixyyd4NYHN1m75c289NR3GZ3/EZoR2lmU84y1hCPHeevP/TL5xs0EaZhOyte9jizL4v4gJTY4Bv0+k6bBhagL0UoTgkdKgTGaurbz89as0eecO5Q9t2mmkSrWTboF8jqJY3jdPSmlmOdcze7JWfgqhNet/we0qDDXW3SDGIb9AXmnWzKJiffonNnB/L6/dPkSZVnSSxK0UvNziGtqXEe3jU3P9EADdV3x2n0RP1vX7VU4EC11VdNf/8nX5A2LC1dVTHb3SIohaX8J3zQE0yKURShLsBXeRLeNrTfdzeYdpyh39qi2d2FakxlN3k+gV4DTPPvSWfYq8L0Ma3cYFmsk2iKUBpMQuuJCKAPOIZQlz3roRCBlgcxSQqp57Knn+d7pHcr0ZgZul3fes8Jdx3NodnBXQDYWUU0R0wlCWrzwXD19mp1XXmIlz9FZgTIZnhio5IGgWmgVyiRwSF0UiLkGu7u78wcUomWnlNG+zXtP07Z4b2msIyd66HvnmExLJtOSXtFHqIRz5y8xHpdxeiE8g6LHINF8/9ln2du5wi9/4GGOL61xYn2DQus4TrMN2JrEZEgR9RoxaThOUl66cIGvff/7jL2HRNMrCkKID2BVVcxsUn0IhM5ZaXbQiaEtLUJIrl3bwbZ+bvF6o7j+Yfzxr7e3t/nsZz/LH/3RH2Gt7WhNjrIsXzexuL5jsL6+ztLSEkVRMJ1OGQwGpGnKZDJhPB6zurbK2uoqwVpOnDjB6uoKwVmyPIp2jTHs7OzE993v89prr83f66w7sb+/P9+8mqZhNBoxHA4pioLd3V16vR6uc3oxSUJZVgyHwy6xWTAcDqnrG08LBeZdCehk2jPSdjiYMMwSdLsL3h3gQ/dt4UDMPf9MYnfresGyvG5yIUQ8s8XrrvD+QJMDs8LgwIUqFqYz4d7ri4tY3HYC+3BwT0h5cOCK1rDXH8Il1h6GW9QsV+KgiNrf26eu62hzqDUSRTlp2dq8mf6DG6QCEiUQIuDxON3DqJT9q5f5jX/8CbTfYzot55tbnGp0fGAXrZ4PurfdJtTxW2ddwytXrrC0tIROCy7v7CNq173vOAWqminrKmF9qcfOuEIakDZOQ5yzjMZjQvCsrg7JCkldNYgg8V6hpaZqb7wDen1hMXvtQsDJ227mnx7/LT74gffzza9+jR89/wLnTz/J2990O2+99zZOHVtmpW9IjKCUgjSAto6WmpAbbnvfW/nhS39BoQ2tF4zaEpWkJEEigiaEgtGo4vIL51g+vkxRSKZtjVExeA4XDSik8ODjRDbytUH3Dd56xH5DKjISIfFC0SBpvacOgSZEy1sJNEpT4lBS0RJiqnB7OG5Rs2dgtqa8/lAS/y6Kp1UMp3M+rkEIhktDghDs7e9hW0vbNIzHY4wx/M/Pfobgpvzch38WpwxaJZBodLKBHqxgrhONCyFBJIgQ4n0ZLOfPv8oTT3yPvChIdKRX1tOKp594ku39/UixBMajEVVds7a21nHcD/QPszA63Vmxz97LTKB+WPhxcw/ZrVez34cQaJwjL3qMJ2OUjrkYnuhMJJVE+EjbtM4jVJysBgKjyZjBUopJE5CwubFMrhWTs7u8emkHkaSsbZxktHeZNHVc3hvx3/7HZ+grw01H7+au227lW488xbsefIgzP3qcta1VHnzo/Tzy148y2LyJ+9/xblxqQERXJSXj4XN2b1h/nRZkTrM5nOJMK4HW0ajAWYvRCmMO0tZnn1k8s9iuWRTX/ZmovyxLtE6R0pBlGa0NiOBQKZRTx95ogsp6NDojyYb0b1rigY2jbL/4FGcffQT2riJcYPnYSW77+Y+htm6hCTmhia59swZcURRordne3aEY9CM92/toQCQNfu7K000ItKKu4tczI4Esy+Y6zBtFVU9xro0NOBs1glL8XSF3/Prgs1NSzg/7M23VzEI5hNBRiz0ugPPQujhdlAj6vQKtTXQn1NESGGaN2TD/mXu7e9EVs8gJwPrGBlLEfJnr9SEzG+zrG8mz137w+jszF+JURb4BpUwc5kO9wAILLLDAAgsssMACC/zDxeHa+iywwAILLLDAAgsssMAC/2CxKC4WWGCBBRZYYIEFFlhggUPBorhYYIEFFlhggQUWWGCBBQ4Fi+JigQUWWGCBBRZYYIEFFjgULIqLBRZYYIEFFlhggQUWWOBQsCguFlhggQUWWGCBBRZYYIFDwf8GmJOg99KqtjAAAAAASUVORK5CYII=\n",
"text/plain": [
"